AD-A250 801

TR o @

NUMERICAL STUDY OF AXIAL TURBULENT FLOW
OVER LONG CYLINDERS

By
Jodo C. Neves. Parviz Moin and Robert D. Moser

" DTIC.

ELECTE
JUN 0 11892
Prepared with the support of the A

Office of Naval Research
under contract NO0014-88-k-0145
and in cooperation with the
Naval Underwater Systems Center

Report No. TF-54

Thermosciences Division
Department of Mechanical Engineering
Stanford University
Stanford, California 94305

April 1992

5 2-11834
92 4°20 137 Hlli'slll’rl”ill!llllhlﬂlll* I




NUMERICAL STUDY OF AXIAL TURBULENT FLOW

OVER LONG CYLINDERS

Joao C. Neves, Parviz Moin and Robert D. Moser

Prepared with the support of the
Office of Naval Research
under contract N00014-88-k-0145
and in cooperation with the

Naval Underwater Systems Center

Report No. TF-54

Thermosciences Division
Department of Mechanical Engineering
Stanford University
Stanford, California 94305

April 1992

Accesion For

DTiC TAB
Unanaounced
Justification

\

NTIS CRA&I )
O

a

By

DiStribuuoa','"“""--w-----..._

Avaiabitity Codes

— e

Avail ::TE.’ or
Dist Special

Al |

Statement A per telecon James Fein

ONR/Code 1221

Arlington, VA 22217-5000

NWW 5/29/92




AD-A250801
TEXT

0 p o/ BOUNDARY
ey p/ BOUNDARY LAYER

CABLES
CHANNEL
CURVATURE
ENERGY
EQUATION

FLOW

FLOW FIELDS3
FRICTION
KINETIC
KINETIC EMERGY
LAYER

LAYERS

MEAN

MOMENTUH
NUMBER
PRESSURE
QUADRANT

REC N

REG1UNS
REYNCLDS NUMBER
SCALE
SIMULATION
SIMULATIONS
SKIN FRICTION
SLOPE

SONAR

SPEED
STATISTICS
THICKNESS
TRANSVERSE
TURBULENCE
TURBULENT FLOW
TURBULENT FLOWS
VELOCITY
VORTICES

WALL

/

@1@ AD-A250801
@20@e u
@23@ Boundaries,

32-17

Layers, Hean, Momentum,

Words/Phrases(4 words

max) that match
THESAURUS

Boundaries
Boundary Layer
Cables

Channels

Curvature Iy
Energy
Equations
Flou 7
Flow Fields W~
Friction o

.

Kinetics -

Kinetic Energy

Layers

Layers

Mean

Momentum

Numbers

Pressure

Quadrants

Regions

Regions

Reynolds Number

Scale

Simulation

Simulation

Skin Friction

Slore

Sonar

Velocity

Statistics

Thickness

Transverse

Turbulence

Turbulent Flow
XTurbulent Flow;h(‘

Velocity ‘ t

Vortices

Walls

goundary Layer, €¢=bies, Channels, Curvature,
Equations, BPtewt Flow Fields, FEsiettorf™ Kinetic Energy,

Quadrants,

, Pressure,

Thzsauruxz

A
v e

}
2

S

Entbies

- Y L.
/i R e

st '/.:»-._.:_ (:75 S

o P
ek

Energy,

Regions, Reynolds

Number, Scale, S+mulatier’ Skin Friction, Slope, Sonar, Statistics,
45~Th§ckness, Transverse, Turbulence,%Purbulent Flow, Velocity, Vortices,

Walls.
@24@ u

@270 Convex transverse curvature effects in wall bounded turbulent flows are

significant 1if the boundary layer

thickness 1is

large

compared to Lhe




AD-A250801 (Cont’'d)

radius of curvature. The curvature affects the inner part ot the flow if
a+, the cylinder radius in wall units, is small. This fiow regime 1is
common in sonar devices towed by long cables. Two direct numerical
simulations of transversely curved flows were perfcrmed and statistical
and structural data were extracted from the computed flow fields. The
effects of the transverse curvature vere identified by comparing the
present results with those of the plane channel simulation, performed at
a similar Reynolds number. As expected, the transversely curved
turbulent flow exhibits many features common to the planar flows:
near-wall low speed streaks, near-wall inclined shear layers, near-wall
streamwise vortices, Reynolds shear stress dominated by second and
fourth guadrant events, etc. As the curvature increases, the skin
friction increases, the slope of the logarithmic region decreases and
turbulence intensities are reduced. Several turbulence statistics are
found to scale *rith a curvature dependent veivcity scale derived from
the mean momentum equation. Near the wall, the flow is more anisotropic
than in the plane channel with a larger percentage of the turbulent
kinetic energy resulting from the streamwise velocity fluctuations.
Near-wall streamwise vortices are the strongest sources of pressure
fluctuations. As the curvature increases, regions of strong normal
vorticity develop near the wall.
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Abstract

Convex transverse curvature effects in wall bounded turbulent flows are sig-
nificant if the boundary layer thickness is large compared to the radius of curvature.
The curvature affects the inner part of the flow if a*, the cylinder radius in wall

units, is small. This flow regime is common in sonar devices towed by long cables.

Two direct numerical simulations of transversely curved flows were performed
and statistical and structural data were extracted from the computed flow fields.
The effects of the transverse curvature were identified by comparing the present
results with those of the plane channel simulation, performed at a similar Reynolds
number. As expected, the transversely curved turbulent flow exhibits many fea-
tures common to the planar flows: near-wall low speed streaks, near-wall inclined
shear layers, near-wall streamwise vortices, Reynolds shear stress dominated by sec-
ond and fourth quadrant events, etc. As the curvature increases, the skin friction
increases, the slope of the logarithmic region decreases and turbulence intensities
are reduced. Several turbulence statistics are found to scale with a curvature de-
pendent velocity scale derived from the mean momentum equation. Near the wall,
the flow is more anisotropic than in the plane channel with a larger percentage
of the turbulent kinetic energy resulting from the streamwise velocity fluctuations.
Near-wall streamwise vortices are the strongest sources of pressure fluctuations. As

the curvature increases, regions of strong normal vorticity develop near the wall.

-

As the curvature increases the wall pressure fluctuations are dominated by
smaller spanwise length scales. Fractional contributions from various layers in the
flow to the wall r.m.s. pressure are marginally affected by the curvature. The ratio
of the axial to azimuthal length scales of the wall pressure fluctuations increase with
increasing curvature. Curvature dependent time and length scales are identified
that collapse the high frequency range of the wall pressure temporal spectra and
the high wave number range of the wall pressure streamwise spectra of flows with
different curvatures. Taylor's hypothesis holds for the wall pressure fluctuations

with a lower convection velocity than in the planar case.
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CHAPTER 1

Introduction

Turbulent flows that evolve over surfaces with convex curvature normal to the
mean flow are common in engineering applications. However, it is only for strong
curvatures that the curvature effects become noticeable. For this reason this flow
has received less attention than its planar counterpart, and the body of experimen-
tal data available is limited. Transversely curved turbulent flows with large curva-
ture effects occur over sonar devices towed by long cables. Of particular interest
is the characteristics of the wall pressure fluctuations underneath the transversely

curved boundary layers.

1.1 Transverse Curvature Effects

In turbulent flows with transverse curvature there is an additional length scale,
the cylinder radius, a. The added complexity introduced by the new length scale
is evident in the laminar flow regime. While in the planar case the absence of a
length scale leads to the self-similar Blasius velocity profile, in the axisymmetric

boundary layer there is no self-similar laminar solution (Seban & Bond [1951}).

The new length scale gives rise to several flow regimes that are characterized
by the ratios of the cylinder radius to the flow length scales: the boundary layer
thickness 4, and the viscous length scale v/ur. The two resulting parameters, é/a
and a*, define a two-dimensional parameter space in which three flow regimes can
be identified. If §/a is small the curved boundary layer is similar tc the planar
boundary layer. In some applications the boundary layer may grow to be several
times thicker than the radius (large é/a), in which case the transverse curvature
affects the flow differently depending on the magnitude of a*. If §/a is large, and
a* is also large, then the curvature only affects the outer part of the flow. If §/a
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Ficure 1.1 Experimental data available for the axial turbulent flow along a circular

cylinder given as a function of the parameters §/a and a* : a Luxton et al. (1984);

+ Lueptow et al. (1985) and Lueptow & Haritonidis (1987); x Willmarth & Yang
1970) and Willmarth et al. (1976); o Rao & Keshavan (1972); o Afzal & Narasimha
1976); v Richmond (1957); o Yu (1959); e present calculations.

is large and a* is small, the curvature affects both the inner and the outer parts of
the flow.

Some of the flow parameters §/a and at that have been investigated experi-
mentally are summarized in Figure 1.1. Lueptow (1988) provides a comprehensive
review of the experimental investigations of this flow. With the exception of Afzal &
Narasimha (1976), whose boundary layers have characteristics very similar to those
of the flat plate, in most experiments the influence of curvature is predominantly
on the outer part of the flow. Some of the experiments of Luxton et al. (1984)
(9 € a* <47 and 26 < §/a < 42) and of Willmarth et al. (1976) (2 < §/a < 42 and
a* > 33) are within the range where both the inner and outer parts of the flow are
affected. In the experiments of Rao & Keshavan (1972) (4 < §/a < 12 and a* > 23)

_



and Lueptow et al. (1985) and Lueptow & Haritonidis (1987) (4 < §/a < 8 and
a* > 38) the curvature primarily affects the outer layer.

One of the characteristics of flows with transverse curvature is larger skin friction
coefficients (Cy) than in planar flows of similar Reynolds number (see for example
Rao & Keshavan [1972] or Willmarth et al. [1976]). In the viscous sublayer of
transversely curved flows the momentum equilibrium is expressed by rr = ary
(Glauert & Lighthill [1955]). Reid & Wilson (1963) and Rao (1967) proposed a
curvature dependent law of the wall,

Ut=a*ln (1 + 2i) (1.1.1)
at )’

which predicts curvature effects on the sublayer for sufficiently small a*.

To achieve large §/a, experiments are typically performed over long tubes or
wires of very small diameter (Luxton et al. [1984] and Lueptow et al. [1985)
and Lueptow & Haritonidis [1987]). In such experimental facilities, the structural
isolation of the wires, the aeroelastic interaction between the flow and the wire,
the alignment of the cylinder with the mean flow, and the cylinder sag are major
concerns. In addition, if a* is small, the size of the measuring probe (e.g., hot
wire) relative to the cylinder diameter becomes an issue in near-wall measurements.
Finally, some of the measurement techniques used are based on the assumption that
close to the wall the mean velocity profile is the same as that of the flat plate (see
for example Richmond [1957] and Lueptow et al. [1985]). Attempts to address
some of these problems are described by Willmarth & Yang (1970) and Lueptow
& Haritonidis (1987).

If §/a is not large (Rao & Keshavan [1972] and Lueptow et al. [1985]), the
logarithmic region of the mean velocity profile has the same slope as the planar
case. This flow regime is described analytically by Afzal & Narasimha (1976)
with the method of matched asymptotic expansions. They conclude that when
§/a = O(1) and in the limit of a* — oo, the axisymmetric turbulent boundary
layer must have logarithmic and velocity defect profiles of the same form as in the
planar turbulent boundary layer. The two parameters in the logarithmic velocity
profile are found to depend on §/a (Afzal & Narasimha [1976]). As §/a increases

and a* decreases, the mean velocity profiles exhibit a logarithmic region with a
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decreasing slope (Lueptow et al. [1985]), and for sufficiently large §/a and small
a*, the logarithmic region deteriorates and becomes negatively curved (Willmarth
et al. [1976) and Luxton et al. [1984]). Some effort has been devoted to identifying
the curvature dependence of the logarithmic velocity profile, however, it is clear
from Leuptow’s (1988) review that no consensus exists on this issue. Nevertheless,
the available data suggests that when é/a is small and at is large the slope of the
logarithmic region tends to scale with §/a (Lueptow et al. [1985]). As §/a increases
and a* decreases, the logarithmic profile depends on both parameters (Willmarth
et al. [1976], Luxton et al. [1984]).

The Reynolds shear stress in the outer part of the transversely curved boundary
layer is lower than its planar counterpart (Lueptow et al. [1985]). Reynolds shear
stress quadrant contributions in the transversely curved turbulent boundary layers
are similar to those in the planar geometry (Lueptow & Haritonidis [1987]). At
y* =~ 39 Lueptow et al. [1987] measured higher fractional contributions from second
and forth quadrant events than in the planar case for weak events. Intense events

are found to have a lower contribution to the Reynolds shear stress.

The axial and normal turbulence intensities measured by Luxton et al. (1984)
or Lueptow & Haritonidis (1987) are also lower than their flat plate counterparts
in the outer part of the boundary layer. Close to the wall (y* < 20), the measured
axial intensities have magnitudes similar to those of the planar case, with maxima
(V2% Jur =~ 3.2) also located at y* ~ 12.

In a visualization study of axial flow over a cylinder, Lueptow & Haritonidis
(1987) observed large scale structures moving across the cylinder. It is not clear
whether the observed transverse flow motions are the result of oscillations of the
wire (Lueptow [1989]). Since these large structures were linked to the azimuthal
velocity component (Lueptow & Haritonidis [1987]) they should significantly affect
the intensity of the azimuthal velocity fluctuations, which unfortunately were not
measured. Similar large scale structures were also observed by Luxton et al. (1984)
for larger curvatures (6/a > 20) only. Luxton et al. (1984) suggested that these

large scale structures are important for turbulence generation in this flow.




1.2 The Wall Pressure

Knowledge of the characteristics of the wall pressure fluctuations is important
for understanding flow-induced sound generation and the structural interaction
between the flow and the body. A comprehensive treatment of this subject is
given by Blake (1986). Since transversely curved turbulent flows occur over sonar
devices towed by long cables, it is important to understand the characteristics
of the wall pressure fluctuations in the flow regime where §/a is large and a* is
small. Reviews of measured wall pressure fluctuations on a flat plate are given by
Willmarth (1975) and Eckelmann (1989). The effects of transverse curvature on the
space-time characteristics of the wall pressure were investigated experimentally by
Willmarth & Yang (1970) for §/a = 2 and by Willmarth et al. (1976) for §/a =~ 4.
Since in both studies a* = O(10°%), the curvature effects were limited to the outer

part of the flow.

Many of the difficulties in the measurement of the wall pressure fluctuations can
be overcome by the use of direct numerical simulations (Handler et al. [1984] and
Choi & Moin [1990]). However, simulations are limited to low Reynolds numbers.
There is some evidence (Willmarth [1975]) that the root-mean-square (r.m.s.) pres-
sure normalized by the mean wall shear decreases with decreasing Reynolds number.
This was confirmed by Choi & Moin (1990), who also found that the spectrum of
the wall pressure fluctuations decreases with decreasing Reynolds number for low
frequencies when scaled with inner variables and for high frequencies when scaled
with the outer variables. In the two transversely curved turbulent boundary layer
studies of the wall pressure fluctuations no appreciable effect of curvature on the
r.m.s. wall pressure was found (Willmarth & Yang [1970]).

As had been found in previous experiments (Willmarth & Wooldridge [1962],
Wills [1964]), Emmerling [1974]), the large scale pressure correlation contours of
Choi & Moin (1990) were more elongated in the spanwise direction than in the
streamwise direction. The curvature dependence of the wall pressure correlations
has not been established. Willmarth & Yang (1970) (6/a =~ 2) suggest that for large
separations the ratio of spanwise to streamwise length scales decreases. However,
their later study for §/a ~ 4 (Willmarth et al. [1976]) shows the opposite trend.
Nevertheless, the wall pressure (Willmarth et al. [1976]) is significantly correlated

around the cylinder and the azimuthal extent of the correlation increases with
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increasing curvature. Willmarth & Yang (1970) argued that the main effect of
the transverse curvature is to reduce the spanwise length scale of the large eddies,

located in the outer part of the boundary layer.

In the planar turbulent boundary layer (Willmarth & Wooldridge [1962]) as well
as in the transversely curved turbulent boundary layer (Willmarth & Yang [1970]
and Willmarth et al. [1976]), the space-time wall pressure correlations indicate that
the eddies decay after traveling a distance of the order of their size. Convection
velocities can be defined from the wall pressure space-time correlation contours
(Wills [1964]). In the planar geometry, there is a consensus among the experimen-
tal (Willmarth & Wooldridge [1962], Panton & Linebarger [1974]) and numerical
(Choi & Moin [1990]) values reported for the convection velocity, which is about
0.8U,,. Using a definition of the convection velocity that is independent of tempo-
ral separation (Wills [1964]), Choi & Moin (1990) found a convection velocity of
0.72U, for which Taylor’s hypothesis was more accurate for large structures than
for small ones. In the transversely curved turbulent flows of Willmarth & Yang
(1970) and Willmarth et al. (1976), convection velocities identical to that of the

planar case were reported.

1.3 Motivation and Objectives

Direct numerical simulation of turbulence is the ideal tool for the study of turbu-
lent flows at low Reynolds numbers. This technique is also well suited for providing
spatially and temporally resolved data to study the characteristics of the wall pres-
sure fluctuations, as well as for identifying the structural features in the flow.

Since, as the curvature increases, the circumference of the cylinder decreases,
there will be fewer structures around the cylinder. In this sense the transversely
curved flow in the large §/a and small a* regime is a better setting for the study
of the mechanisms of wall bounded flows. This is similar to the minimal channel
of Jimenez & Moin (91) with the added advantage that the periodic boundary

condition in the transverse direction are the natural boundary conditions.
The study described in the following chapters had the following objectives:

1) to develop a pseudo-spectral method for the incompressible Navier-

Stokes equations in cylindrical coordinates with a no-stress outer boundary;

6




it) to generate a spatially resolved database for turbulent flow with
transverse curvature to study curvature effects on the turbulence statistics

as well as instantaneous flow structures;

111) to identify scaling parameters that link the statistics of the trans-

versely curved flows with those of the planar case;

iv) to study the effects of the transverse curvature on the pressure
field; to generate a temporally and spatially resolved database of the wall
pressure and wall shear stresses and to study the space-time characteristics

of the wall pressure fluctuations.







CHAPTER 2

The Model Problem

This chapter describes the numerical approach used to solve the incompressible
Navier-Stokes equations for the axial flow over a cylinder. The key features of
the method are the truncation of the semi-infinite domain in the radial direction,
the decoupling of the viscous operators of the radial and azimuthal momentum
equations, the calculation of the pressure through a variant of the method of Kleiser
& Schumann (1981) and the imposition of the far field boundary conditions. In
addition, a new dependent variable is defined (T), and the velocity is obtained
from the solution of two partial differential equations for V; and T and algebraic
equations for V; and V. The validation of the numerical approach is discussed at
the end of the chapter with the calculation of the stability characteristics of several
two- and three-dimensional Taylor-Couette flows.

Throughout the chapter the velocity scale is the friction velocity, ur = \/1_',1,_/— ,
where 7y, is the mean wall shear stress. The thickness of the layer is 6, and the
superscript * denotes the scaling with the viscous length, v/ur. Total fields are
indicated by upper case symbols and fluctuating fields are denoted by lower case
symbols. For example, V and V are the total and fluctuating velocity vectors,

respectively.

2.1 Equations of Motion

To solve the Navier-Stokes equations for axial flow along a cylinder we use cylin-
drical coordinates (r, 6, z), where r is the radial coordinate, 8 is the azimuthal co-
ordinate and z the axial coordinate. In cylindrical coordinates the incompressible

Navier-Stokes equations are (see for example Batchelor [1967]):

6‘t+Hr= +

av; P 1 (e, Vi 20V,
_?37 Rer (V Vr ), (211 a)
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oV, _ 18P 1 (o Vi 28V,

o +He 30 " Re, (VV’_T‘LF? 36 ) (2.1.16)
v, P 1 _,
W Hz —E + RCTV Vz, (211 C)

where H = (H;,Hr, Hy) are the convective terms and the density is absorbed into
the pressure. Note that, unlike their Cartesian counterparts, the viscous operators
of the radial and azimuthal momentum equations are coupled. The continuity

equation is given by

K,: + oVy +}_6‘/9 + av,
or r 06 0z

=0. (2.1.1 d)

The Laplacian operator is

&’ 10 18 &

2 _ e— — ——— — — —
vi= or? + ror + r2 §6? t 8z%’ (212)
and the convective terms (H, Hy, Hy) are

S| AN /% | 2 | A
Hr=V, or +T a0 +V 9z r’

L,V V0V, o, ViV 2.1.3
Ha—w6r+—r—'—30+vzaz+ r’ ( )

_ L0V V0V, av,
=Yg+ %0 t Vg,

From the divergence of the momentum equations one obtains the Poisson equa-

tion for the pressure

vip=-v-H. (2.1.4)

The flow under consideration is naturally homogeneous in the azimuthal direction
and is assumed to be homogeneous in the axial direction. In the radial direction the
semi-infinite domain is truncated to a finite one, where r € [a,a+1]. At r =a+1,
model boundary conditions are imposed. The flow is driven by a mild streamwise

pressure gradient and reaches a statistically steady state. This model corresponds

10
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to a boundary layer with no spatial growth and is therefore an approximation to
the physical case. Apart from the numerical advantages, the lack of spatial growth

affords a better statistical sample for turbulence correlations.

Note that the domain truncation of this model prevents the occurrence of large
scale viscous/inviscid interactions. Experiments (Luxton et al. [1984], Lueptow
& Haritonidis [1987]) have reported that such structures periodically cross the
cylinder. As discussed in Chapter 1 the origin of these structures may be due to
vibrations of the cylinder and not purely a fluid dynamic phenomenon. In any case,

our model is incapable of capturing such structures.

2.1.1 Boundary Conditions

On the surface of the cylinder (r = a) no-slip boundary conditions are imposed,

-3

V| =o. (2.1.5 a)

r=a

In the axial direction, a finite domain of length L, is chosen and periodic boundary
conditions are imposed. In the azimuthal direction the flow is naturally periodic.
In a semi-infinite domain the far field (y — oo) velocity boundary conditions for
the axial flow along the cylinder are V; - U, and (V;,V;) — 0. In the truncated
domain in which the calculations are performed, we require that the radial compo-
nent of the velocity be zero at r = a + 1. The boundary conditions for the axial
and azimuthal velocity components are obtained by requiring that the surface shear
stress be zero at the outer edge of the domain, that is, opg|r=a+1 = Orzlr=a+1 = 0.

Thus, we impose

o (V,
Vr r=a+1 - 0’ E (—r_)

The computational domain is illustrated in Figure 2.1.

=0, oV

AL =0. (2.1.5 b)
r=a+l or r=a+l1

12




2.1.2 Radial Coordinate Stretching

In the radial direction Chebyshev polynomial expansions (see for example Got-
tlieb & Orszag [1967]) are used. These expansions promote a high grid resolution
at the edges of the domain (r = @ and r = a +1). This is appropriate for the inner
boundary where no-slip boundary conditions are imposed. However, at the outer
edge of the domain fine resolution is not necessary because no sizable velocity gra-

dients are expected there. To avoid this waste of resolution, the radial coordinate

mapping

r—a——(l—ﬂ) (;J“i) (2.1.6)

is used, which increases the resolution close to the cylinder surface at the expense of
the resolution at the outer edge of the computational domain. In this expression,
the Chebyshev variable ¢ € [-1,1] & r € [a,a + 1] and the parameter 3 =

was used. Because the axial and azimuthal directions are periodic, we use Fourier

expansions in these directions.

2.2 Uncoupling of the Viscous Operators

In the discussion that follows, the solution procedure is discussed without refer-
ence to the radial coordinate mapping (Equation 2.1.6) because its inclusion would
only increase the algebraic complexity of the equations. Also in the remainder of

the chapter the Fourier transformed (in 6 and z) equations will be considered.

In the solution of the incompressible Navier-Stokes equations it is computation-
ally convenient to eliminate the pressure. The fourth order formulation of (Kim
et al. 1987) or the use of divergence-free expansion functions for the velocity field
(Moser et al. 1983) are examples of how this can be achieved. In Cartesian coor-
dinates, after eliminating the pressure, the momentum equations are only coupled
through the nonlinear terms. In the cylindrical coordinate system the coupling is
in both the convective terms and the viscous terms of the radial and azimuthal
momentum equations. In order to decouple the radial and azimuthal momentum

equations we define T as (" denotes the Fourier transform)

T = lkz"\/g —_ isz. (22.1)
13




and recast the momentum equations in the following form:

oP 1

2 __op 29
5 +H, = e + Rerv Vr, (2.2.2 a)
BT ~ 1 ~ 1 - 25
) Hy = kzm(; —-r)P + Re,—v T (2.2.2 b)
where
< ~ 1 ‘71' . 2 O
Hr = Hr + RCT (‘13‘ + lmﬁ%) )
(2.2.3)
fr =ik By — imB, — 22 (—Y-"- + im—z—f/r> ,
Rer r? r?
and 18 5 R
2o 18 (8 m
V4 = o (rar) = k%, (2.24)

is the Fourier transformed Laplacian operator. The axial wave-number is

=T 2.9.
k, sz, (2.2.5)

and the azimuthal wave-number is m.

In the numerical approach adopted, we solve first for Vr, so it is convenient to
express the boundary conditions for T as a function of V. At the surface of the
cylinder we have T(r = a) = 0. At the outer edge of the domain the boundary

conditions on the velocity (Equation 2.1.5 §) and continuity give

oY - oV,
2 2 —_— 2 = - r
(m? + rk?) . kZT} k.m ( B ) . (2.2.6)
r=a+1 r=a+1
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The computational advantage of this approach is that in Fourier space the con-
tinuity equation (Equation 2.1.1 d) and the definition of T (Equation 2.2.1) deter-
mine an algebraic system of equations for V; and V, as a function of V; and T. The

solution of the system is

T m? + rk2

'y l [ ) aVr 2
V= i |Fe (Vr“ar)mf]’

which is easier to solve than the partial differential equations that they replace.

(2.2.7)

2.3 Time Advancement

An implicit second order Crank-Nicholson scheme is used to time advance the
viscous terms in these equations. The convective-like terms, H, and Hy, are ad-
vanced explicitly with a second order Adams-Bashforth scheme. Note that the
viscous contributions to H r and H r do not involve radial derivatives, which could
lead to numerical stability problems. A von Neumann stability analysis of the cross-
terms in the viscous operators shows that they do not produce a severe stability

limitation and can be treated explicitly.

The time discretized equations for V; (Equation 2.2.2 ) and T (Equation 2.2.2 b)

at time step n + 1 are:

~

At oo vomtl _ _ A, 9P"
(1 2Re rv )V —At or
‘;t (3H" ﬁ;‘-l) +(1+ 22 v3vn, (231 a)
€r
rnt1 - rn+1 —
V,. r=a 0, V,. r=a+1 -
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At - 2yyn+l __ 1 >3]
(1~ 5 VHT™H = komat(- - r)P
At rn rn—1 At - 2\n
> (387 - B3 )+(1+2Re,V T
) (2.3.18)
‘rﬂ+l = 0,
r=a
sn+l ~ n+l
(m® + rk2 )—a—I intl = —mkzé}i ,
% or z or .
r=a+l r—a+1
A - Aan 1 an-1
Vipr = —y- (gH - = ) , (2.3.1 ¢)

where the boundary conditions for the pressure (Equation 2.3.1 ¢) enforce the

continuity equation at the boundaries (see Section 2.4).

In this formulation, two elliptic operators, (1 — AtV2/(2Re;)) and V2, need to

be inverted for each wave number pair (m, k) at each time step.

The flow variables are represented by the following expansions

N, No/2-1 N./2-1 .

(D)eezn=Yme ¥ om ¥ i (Y) o @i

=0 m=—N, [2 k=-N, /2

where Tj(¢) are the Chebyshev polynomials and V,mk(t) and lek(t) are the com-
plex spectral coefficients for the velocity and pressure, respectively. (Ny, Ny, N;)
denote the number of modes in the radial, azimuthal and axial directions respec-
tively.

With the radial coordinate stretching, each elliptic operator results in a matrix
with 12 diagonals above the main diagonal and 8 below. In addition, the boundary
conditions fill the two bottom rows of each matrix. The high computational cost
of the inversion of matrices with this band structure was one of the reasons for
the adoption of a constant time step. Substantial savings in computer time are
achieved by the precalculation and storage of the LU decompositions of the matrices
corresponding to the operators (1 — AtV2/(2Re;)) and V2.

16




The const: nt time step was chosen in accordance with numerical stability con-
straints. The C FL number

(2.3.3)

CFL=rnAt (Ar rd8 Az

Vel 14l 1)

max

was required to be less than 0.6 throughout the calculations.

2.4 Continuity at the Boundaries

The role of the pressure is to ensure a divergence free velocity field; thus the
appropriate boundary conditions for the pressure at r = @ and r = a + 1 must
be chosen such that continuity is satisfied everywhere including at the boundaries.
Kleiser & Schumann’s (1981) algorithm for the enforcement of continuity is used

here.

We start by writing P and V; as

pn+l =Pin+l + arll+11‘5hl + a3+113h2,

(2.4.1)
~ ~ n+l a -
Vrn+1 =Vri + afll'l-lvrhl + agHVrhz,

n+1 1

where o™ and ag'*' are constants to be determined at each time step. P; and

3 1 . . .
Vr:H- are the particular solutions and satisfy

V2pr = -V.H, PP =0, (2.4.2)
r=a,a+1
and
At wovomst _ _ o, OPF
(- 2Re1-V Ve = At or
At (afm _ fn-1 At G2ypn 2.4.3)
—7(311,.—11, )+(1+§'Re_,V W, (
Vr?+l =0, VT;H-I =Y,
r=a r=a+1
17




respectively.
Ph, and ﬁhz are obtained from:
v 2 : s : g p —_—
v Phl =0, Py, —a 1, Ph1 reatl 0,
(2.4.4)
v 2 p p—d p =" s =
v th =0, Py, —a 0, th reatl 1.

In order to satisfy Equations 2.3.1 a and 2.4.3, Vrhl and ‘;;'hg are the solutions of

(1- -22—;?72)17,,,1 = ‘Atag}l’
Ve r=a = Ve reatl = O
) (2.4.5)
(1- 22_:1_{72)‘}rh2 = At%,
Ve, rea = Veh, reatl O

With a constant time step At (used in the present calculations), Py , Py,, Vrp, and

Vrh, need to be calculated once, stored and used throughout the calculations.

+1 and ag'*'l are obtained at each time step from the the con-

The constants a]
straint imposed by the continuity equation at the boundaries. The radial derivative
of the continuity equation and the velocity boundary conditions, given by Equations
2.1.5 a and 2.1.5 b, lead to the following compatibility conditions at the boundaries

of the computational domain:

af/rn+1 ;] 6‘7,.""'1
=T | =0, =|r =0. 2.4.6
ar r=aq or ( ar r=a+1 ( )
18




The expansion of V; according to Equation 2.4.1 and the above compatibility
conditions lead to the following system:

- ntl
oV,
Or |r=a
~ n4l =
a v,
H;(r r ) r=a+1
, (2.4.7)
Ve 8V, 1

o o

r=a

o v,
#(-%)

r=a altl

3 n+1
a a‘,rh az
r 1
r=a+1 Er( r ) r=a+1

which determines oz'l""l and ag“. With these constants, the pressure and radial

velocity fields that satisfy the continuity equation are uniquely determined.

2.5 The Mean Flow

The mean flow (corresponding to m = 0 and k¥ = 0) in the axial direction is
governed by the axial mean momentum equation

aV’+'ITz=—(—9£+ 1 [18 (raVz)]

ot 0z ' Re, |ror or
B (2.5.1)
-V_z = 0, aVZ = 0,
r=a or r=a+l

where the overbar denotes average over § and z planes.

The flow is driven by a mild axial pressure gradient so that it can reach a
statistical steady state. In the cylindrical geometry the mass flux in the axial

direction is given by

a+1
M =2r / V,rdr. (2.5.2)
a
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Integration of the mean axial momentum equation in the radial direction gives

__ a+l —
dP — 2 2a aVz

dz  1+2a / Hardr - Rer(1 + 2a) Or ’
a

(2.5.3)

r=a

which determines the mean axial pressure gradient necessary to maintain a constant

mass flux.

The only solution for V, that satisfies the mean continuity equation and the
boundary conditions is
Vr=0. (2.5.4)

Finally, the mean flow in the azimuthal direction (V) satisfies

W — 1[0 [V Vi
+tHo= g [ar("ar)'ﬁ ’

2%
r=a gr\r r=a+1

(2.5.5)

2.6 Code Verification

The method described above was extensively tested. The eigenvalues of the
Stokes operator with homogeneous boundary conditions were computed. As ex-
pected, the eigenvalues are real and negative. Furthermore, they were verified
to be in close agreement with the eigenvalues computed by Moser (1988) using a
different numerical method.

In addition several Taylor Couette flow cases were computed. The extensive
experimental and computational data available on Taylor Couette flow makes it an
ideal test case for the code. First, the critical Reynolds number (Re.) for the onset
of Taylor vortices was computed and compared with the existing data. Comparisons
with analytical (DiPrima & Eagles [1977]) and computational (Moser et al. [1983])
results for two gap widths are shown in Table 2.1 a. In this table and the remainder
of the chapter R; and R, are the radii of the inner and outer cylinder, d = R, — R; is
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the gap width and ) is the axial wave-number of the vortices. The two-dimensional
Taylor Couette flow is also characterized by the torque

, (2.6.1)

r=r;

G = 2w Rey (r’% - rV,)

that must be applied to the inner cylinder to drive the flow. Calculated torque
values for gap widths and Reynolds numbers for which there are both experiments
(Donnelly & Simon [1960]) and computations (Moser et al. [1983]) are reported in
Table 2.1 b. In all cases the two-dimensional calculations of the present code are

in excellent agreement with both the experiments and previous calculations.

ri/ro = 0.5 ri/ro = 0.95

A/d = 3.976 A/d = 4.018
DiPrima & Eagles (1977) 1 184.99 68.19
Moser et al. (1983) 185.99 68.2
present 184 68.2

Table 2.1 a Critical Reynolds number (Re.) for 2-D Taylor vortices

ri/ro =005, Rey =188 r;i/ro=0.95 Rey = 195

A/d = 3.976 A/d = 4.018
Donnelly & Simon (1960) 1.479 x 103 5.26 x 10°
Moser et al. (1983) * 1.487 x 108 5.42 x 10°
present 1.486 x 103 5.43 x 10°

Table 2.1 b Torque for 2-D Taylor vortices

* Computations; t Stability analysis; { Experiments.
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ri/r., = 0.868 ri[ro = 0.875

Reg = 458.1 Reg = 243.5
King et al. (1984)  0.3344Q; 1, 0.33470; " 0.37579; ©
present 0.33432; 0.37599;

Table 2.1 ¢ Wave speed of 3-D Taylor vortices (A\/d = 3.0, m = 6)

To test the full three-dimensional code, the wave speeds of wavy Taylor vortices
(Coles [1965]) were calculated for several gap Reynolds numbers (Rey), axial wave
lengths (A/d) and wave numbers (m). The results of the present code are compared
in Table 2.1 ¢ to the data of King et al. (1984), which includes experiments and
computations.

2.6.1 Numerical Resolution

The spatial resolution parameters describing the two turbulent flow simulations
reported here are shown in Table 2.2.

Note that the effective azimuthal resolution, A@ = 2xr/N,, depends on the radial
location, with the coarsest resolution at the outer edge of the domain (r = a + 1).
Because of this, the simulations are very well resolved in the azimuthal direction,
near the wall. At the outer edge, the resolution appears to be adequate as shown by
the velocity spectra in Figure 2.2. In Figure 2.3, the axial spectra of the velocity
fluctuations at two distances from the wall are shown. In both simulations the
axial resolution appears to be adequate with no energy accumulation at the high
wave-numbers.

The length of the computational domain is set to be sufficiently large to ensure
that the velocity is decorrelated for separations larger than half of the computa-
tional box, so that the imposed periodic boundary conditions will have minimal
effects on the turbulence. Axial two-point correlations (Figure 2.4) show that this
is roughly the case.

* Computations; { Stability analysis; § Experiments.
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6/a 5 11
L, 4 6r
L,* 2676 4656
Ly,* = 2ma* 268 141
Lg,* = 2n(at + &%) 1608 1692
A} =L;*/N, 14 14
A} = Lg,* [N, 4 1
A = Lg,* /N, 25 13
(Nz, Nr, Ny) (192,96,65) (320,96,129)

Table 2.2 Grid resolution parameters
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FiGure 2.2 Azimuthal (spanwise, Ak, = §/r) spectra of the velocity fluctuations

normalized by § and ur for §/a = 5 (a) and for §/a = 11 (b):
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CHAPTER 3

The Velocity and Vorticity

This chapter describes the major statistical characteristics and time dependent
structure of the velocity field. All the statistics presented are obtained from a
sample collected after the calculations had reached the statistically steady state,
and are calculated using spatial averaging over the domain in the 6 and z directions
and temporal averaging that covers 2.5 §/ur time units in the §/a = 5 case and
2.1 §/ur time units in the §/a = 11 case. Throughout the chapter the results are
compared to those of the plane channel of Kim et al. (1987).

In Section 3.1 the properties of the mean flow are studied and compared with
the available experimental data. In Section 3.2 turbulence intensities and the
Reynolds shear stress are shown to decrease with increasing curvature. In addition,
a curvature dependent local velocity scale, which collapses several flow statistics,
is derived from the momentum equations. The structure of the Reynolds shear
stress is discussed in Section 3.3. Vorticity statistics are presented in Section 3.4.
Finally, the instantaneous structural characteristics of the flow are presented via
contour plots in Section 3.5.

3.1 Mean Velocity Statistics

Mean flow parameters for the present transversely curved flow simulations as well
as for the plane channel (§/a = 0) are reported in Table 3.1. Because the Reynolds
numbers of the three simulations are similar, the differences in Table 3.1 are due
to the transverse curvature. For comparison, Tables 3.2 a, 3.2 b and 3.2 ¢ contain
the mean flow parameters of the experiments of Willmarth et al. (1976), Luxton
et al. (1984) and Leuptow & Haritonidis (1987). In agreement with experimental

observations, the skin friction coefficient,

2
Y i
Cf—-2<Um) ) (3.1.1)




é/a 0 5

a* - 43

Cy 6.04x1073 8.07x1073
Res 3300 3368
Re, 180 214
Req - 674
8*/6 0.141 0.154
) 0.087 0.123
H 1.62 1.25

Table 3.1 Mean flow parameters

11

21
9.87x10~3
3418
239
311
0.152
0.131
1.15

increases with increasing curvature (by as much as 63% for §/a = 11) when com-

pared with the plane channel flow with comparable Reynolds number. However,

in the simulations the magnitude of this increase is larger than has been observed

experimentally, probably because of the much higher experimental Reynolds num-

bers (Res = 0(10%)). In Table 3.1 the boundary layer displacement and momentum

thicknesses reported for the present transversely curved flow simulations are defined
by (Luxton et al. {1984])

and

a/6+1 _
(a/6 +6*/86)% = (a)6)? =2 / (1 - ‘U/—m> rdr,
a/6
afé+1 _
mw+mmf-mmﬂ=2/ G%)O—£ﬁnm
afé
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4.7

751

3.04 x 10~3

90380
19230

16

198

4.18 x 103

69280
4330

37.5

46
7.84 x 1073
27600
736

Table 3.2 a Experimental mean flow parameters (Willmarth et al. [1976]}).

§*/6
0* /6
H

26

47.4
7.3 %1073
20386
785
0.184
0.181
1.014

26.9

32.1
0.01
12252
455
0.185
0.182
1.02

41.6

13
0.017
5962

140
0.187
0.182

1.03

Table 3.2 b Experimental mean flow parameters (Luxton et al. [1984]).

Rea

6.74

288
3.5 x 1073
46330
6419

7.16

144

3.8 x 1073

23700
3209

8.0

72
4.1x%x 103
12800
1605

Table 3.2 ¢ Experimental mean flow parameters (Lueptow & Haritonidis [1987)).

29




8 -
]
8
¥ 2_‘ S e o M
D 1 '/ ______________________
J / ] -//' ___________
0] g
o} - I — et
: 10 100
yt
FiGURE 3.1 Mean-velocity profiles: —-— plane channel (Kim et al. [19871); cylinders
with 6/(1 =5 and ---- 6/(1 = 11; - planar law of the wall, Ut = y+’ and

log law, Ut = 2.5In(y*) + 5.5.

respectively. Even though several different definitions for the displacement and
momentum thicknesses in transversely curved flows have been proposed in the lit-
erature, there are several reasons to adopt the above definitions. The expression fcr
the displacement thickness (Equation 3.1.2 a) is consistent with the usual mass flux
displacement argument, and the momentum thickness defined by Equation 3.1.2 b
arises in the axisymmetric integral momentum equation. In this sense, the two
definitions have the same physical meaning as their planar counterparts, and in
the flat plate limit (§/a — 0), Equations 3.1.2 reduce to their planar counterparts
(multiplying by é/a before taking the limit §/a — 0). Luxton et al. (1984) mea-
sured 6*/6 and 6* /6 according to the above expressions and find higher values than
in the simulations. This is probably a result of the larger é§/a in the experiments.
The shape factors (H = 6*/6*) measured by Luxton et al. (1984) are around unity,
whereas the shape factor in the simulations is larger than one and decreases with

increasing é/a due to an increase in the momentum thickness.
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3.1.1 The Mean Velocity Profile

The mean velocity profile of the two transversely curved flows (§/a = 5 and 11)
are compared to that in the plane channel flow in Figure 3.1. Because of the small
values of a*, the viscous sublayer mean velocity profiles are slightly affected by
the curvature of the wall. In contrast most experiments (Rao & Keshavan [1972],
Willmarth et al. [1976], Lueptow et al. [1985]), find no effect of curvature in the
mean velocity profile for y* < 20. Clearly, in many of these experiments a* is too
large for there to be a perceptible inner layer effect (for example a* = 140 and
6/a =~ 7 in Lueptow & Haritonidis [1987]). However, even in experiments in which
the values of a* are close to or below those of the simulations (for example Luxton
et al. [1984] and Willmarth et al. [1976]), the measured mean velocity profiles
agree with the planar velocity profile for y* < 20. This disagreement between
the experiments and the simulations may be due to measurement difficulties close
to the wall of the cylinder. In addition, it should be noted that, in many of the
mean velocity measurements, the estimation of the friction velocity is estimated
by assuming that the mean velocity profile of the transversely curved flow is not
affected by the curvature near the wall. The mean velocity profiles of the present
numerical experiments suggest that this assumption is not correct, at least in the
flow regime of interest here, that of large 6/a and small a*.

In the planar boundary layer, the assumption that the total stress is dominated
by the viscous stress in the viscous sublayer leads to the planar law of the wall, Ut =
y*. For the axisymmetric boundary layer in the absence of a pressure gradient, the

mean momentum equilibrium in the viscous sublayer is expressed by

T a
— ==, (3.1.3)

Tw

as first noted by Glauert & Lighthill (1955). Assuming that the Reynolds shear
stress is negligible in comparison to the viscous stress leads to the law of the wall
for axisymmetric flows (Reid & Wilson [1963], Rao [1967]),

+ + y*
Ut =a*ln (1+a_+)' (3.1.4)
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Ficure 3.2 Total stress normalized by u,: analytical for cylinders with 6/la="5
a.r/xd ---- §/a = 11; symbols for computed results with o for §/a = 5 and with & for
6/a =11.
Note that to second order in y*, Equation 3.1.4 is given by

+ + y*

Thus, the law of the wall for the viscous subalyer in transversely curved flows is
equal to the planar viscous sublayer law of the wall, U* = y*, plus a curvature
dependent correction. Clearly, if a* is large the mean velocity profile near the wall
does not deviate appreciably from the planar case. The mean velocity profiles given
by Equation 3.1.4 are better approximations to the computed near-wall velocity
profiles than the planar law of the wall.

As observed in several experiments (Lueptow et al. [1985], Luxton et al. [1984]
and Willmarth et al. [1976]), the slope of the mean velocity profile in the logarith-

mic region decreases with increasing curvature and the profiles become negatively
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curved. However, the dependence of the slope of the logarithmic region on the cur-
vature is larger in the simulations than in experiments (Willmarth et al. [1976)).
The difference seems to be associated with the flow regimes that were investigated
by the various authors. Lueptow et al. (1985), for example, show that the slope
of the logarithmic region does not change for small §/a. This is not surprising
because for small §/a the curvature effects are limited to the outer part of the
boundary layer in high Reynolds number flows. Based on the same measurements,
Lueptow et al. (1985) also argued that the slope of the logarithmic region is not
a function of a*. The latter conclusion, however, is questionable because in those
experiments a* is consistently large. These observations are in general agreement
with the asymptotic analysis of the axisymmetric momentum equations in the limit
of §/a = O(1) and a* — oo (Afzal & Narahsima [1976]). To lowest order in this
limit, the axisymmetric boundary layer has both a logarithmic region and a outer
velocity defect law. For smaller a* the parameters of the velocity profile in the two
regions depends on both §/a and a*. The measurements of Luxton et al. (1984)
for flows with larger 6/a than in the present simulations but with similar a* show
logarithmic region slopes comparable to those reported here. The lack of consensus
on this issue is summarized in the review of Lueptow (1988). A parametric study
is necessary before a conclusion can be reached, but it seems that the slope of the
logarithmic region is a function of both a* and §/a when both the inner and outer
layers are affected.

3.2 Turbulence Statistics

The statistical steady state is characterized by an equilibrium between the mean
total stress and the applied streamwise pressure gradient. For the flows considered

here this is expressed by

1dV,  ,a(a+6)?—r?
uv+Re dr —pufr(a+6)2—a2'

(3.2.1)

Figure 3.2, shows the total stress (computed and analytical) for the present simula-
tions. Note that the computed and analytical curves coincide in both simulations,

indicating that the statistical steady state has been achieved.
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Ficure 3.3 Root-mean-square velocity fluctuations normalized by ur: (a) Axial
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et al. [1987]); cylinders with §/a="5and ---- §/a = 11.
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Ficure 3.4 The energy partition parameter K* = 2v2/(vZ + v2): —-— plane channel
(Lee et al. [1990]); cylinders with 6/a=5 and ---- 6/; = 11.

3.2.1 Turbulence Intensities

The turbulence intensities normalized with the friction velocity decrease through-
out the layer as the curvature increases (Figure 3.3). The streamwise component is
the most energetic and the location of its maximum moves slightly towards the wall
as the curvature increases. The smaller turbulent kinetic energy in the transversely
curved flows can be attributed in part to the smaller surface area over which vor-
ticity fluctuations can be generated relative to the volume of turbulent supported.
The cylinder surface is apparently not less efficient as a source of turbulent kinetic
energy; rather it has to supply a larger volume. This geometric difference is one of
the reasons for the reduced intensity levels in the transversely curved flows. As the
curvature increases the turbulence intensities in the outer part of the flow decrease
in agreement with several experiments (Lueptow et al. [1985], Lueptow & Haritoni-
dis [1987] and Luxton et al. [1984]). For experiments with comparable a*, Luxton
et al. [1984] report a maximum value of the streamwise intensity, v2'/*/U,, ~ 0.16,
similar to the simulation result of 0.15. However, for the larger a* experiments of
Lueptow & Haritonidis (1987), the maximum value of 5?/2 Jur of 3.3 is higher than
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FIGURE 3.5 Pressure strain term of the streamwise intensity (5;5) budget equation
normalized v and ur: cylinders with 6/a =5 and ---- §/a = 11; —-— plane
channel (Mansour et al. [1988]).

in the flat plate, contrary to the simulation results. This may be due to the fact

that in their flows a* is too large for there to be an inner layer curvature effect.

Similarly, the normal (EI/ ?) and azimuthal (5?1/ 2) intensities are lower than in
the planar case. However, the reductions in the normal and azimuthal intensities

are greater than that of the axial intensity. The energy partition parameter (Lee
et al. [1990]),

202
K*=-"2_ (3.2.2)
o
shown in Figure 3.4, is a measure of the relative contributions to the turbulent
kinetic energy of the streamwise turbulence intensity and the intensities normal to
the mean flow. The attenuation of the normal and azimuthal velocity fluctuations

is strongest for y* < 30 and increases with curvature.

Figure 3.4 suggests that the transfer of energy from the streamwise velocity com-
ponent to the other two velocity components is strongly damped as the curvature

increases. In the budget equations of the intensities (see Appendix A) it is the
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Ficure 3.6 Reynolds shear stress normalized by ur: cylinders with 6la=15

and ---- §/a = 11; —-— plane channel (Kim et al. [1987]).

pressure strain terms that are responsible for the intercomponent energy transfer.
As shown in Figure 3.5, as the curvature increases, the pressure strain term of the
budget equation for the streamwise intensity decreases significantly throughout the
layer.

3.2.2 Reynolds Shear Stress

The Reynolds shear stress (Figure 3.6) is also reduced by curvature. The loca-
tion of the maximum of the Reynolds shear stress profile is a function of é/a and
moves towards the wall with increasing curvature. However, this does not affect
the position of the maximum in the production (~v;vrdV;/dy) of turbulent kinetic
energy (y* ~ 12, see Figure 3.10 ). In the outer part of the layer the measure-
ments of Lueptow et al. (1985) show that the Reynolds shear stress decreases with
increasing curvature in agreement with the simulation results. In the inner layer,
the measurements of the Reynolds shear stress reported by Lueptow et al. (1985)
for the transversely curved flows do not differ appreciably from those of the pla-

nar case. In contrast with the present simulations the near-wall maximum of the
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Ficure 3.7 Correlation coefficient: cylinders with
—-— plane channel (Kim et al. [1987]).

§/a=5and---- §/a =11;

Reynolds shear stress (—v;0r/u2) reported by Leuptow et al. (1985) is about 0.8,
similar to the plane channel result of Kim et al. (1987) (Figure 3.6).

The velocity correlation coefficient, shown in Figure 3.7, suggests that there are
important differences both between the two transversely curved flows as well as
between them and the plane channel. Close to the wall (y/é < 0.2), the streamwise
and normal velocity fluctuations are increasingly better correlated as the curvature
increases. Away from the wall, the large curvature case (§/a = 11) shows a sig-
nificant reduction in the correlation coefficient. This may be an indication of flow
stabilization, although for §/a = 11 the flow is a self sustaining turbulent flow and
reaches statistically steady state.
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FiGure 3.8 Velocity scaling function F(y/é; 6/a) —-— plane channel (6/a = 0);

cylinders with é6/a=>5and ---- §/a = 11.

3.2.3 Velocity Scaling

As a function of the distance to the wall the total stress (Equation 3.2.1) can be
rewritten as of6 /6
Y
= pul al5+ /6(1+1+2a/6)(1—y/5). (3.2.3)

In this form it can be easily compared with its planar counterpart

r = pul(1-1y/és), (3.2.4)

which is a linear function of y/é. These two expressions suggest the definition of a

new velocity scale for the transversely curved flows

u=us/F(y/6;6/a), (3.2.5)
where
a 6 -1
F(y/6;6/a) = \/ —/ﬁ;/éy—/ (1 + :_’é‘i / a) . (3.2.6)
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Note that in the planar limit (6§/a — 0), F(y/é;6/a) — 1 and the planar velocity
scale, u = ur, is recovered. Also, for small curvature (§/a < 1), F = 1 throughout
the layer, (Figure 3.8).

When scaled with u, the turbulence intensities and Reynolds shear stress profiles
of the two curved flows collapse (Figure 3.9 and Figure 3.10 a). The collapse with
the plane channel stresses is also satisfactory except for the transverse turbulence
intensity. Turbulence production and viscous dissipation apparently do not scale

with u near the wall (Figure 3.10 b and 3.10 ¢).

3.3 Quadrant Analysis

The correlation coefficient profiles (Figure 3.6) suggest that the Reynolds shear
stress producing events are strongly affected by curvature. In the transversely
curved flows, the partition of the Reynolds shear stress among the four quadrants
is very similar to that of the plane channel, as shown in Figure 3.11. It is a
characteristic of wall bounded flows that the Reynolds shear stress is dominated
by the second quadrant events (v; < 0 and vy > 0) in the outer layer, and by the
fourth quadrant events (v, > 0 and vy < 0) in the inner layer. The crossover point
between the domains of second and fourth quadrant events occurs at the same

distance from the wall (y* ~ 12) as in the plane channel.

The fractional contributions to each of the quadrants of the Reynolds shear stress
are shown in Figures 3.12 and 3.13 for §/a = 5 and é/a = 11, respectively. At a
given distance from the wall, the fractional contributions of each of the quadrants
to the Reynolds shear stress in the transversely curved flows are similar to the
corresponding fractional Reynolds shear stress contributions in the plane channel
(Kim et al. [1987]). This invariance of the fractional contributions with curvature
means that Reynolds shear stress events of any intensity contribute the same frac-
tion of the total Reynolds shear stress in the transversely curved flows as in the
plane channel. This is contrary to the measurements of Lueptow & Haritonidis
(1987), who found that, in transversely curved flows, low intensity Reynolds shear
stress events accounted for a larger percentage of the total Reynolds shear stress

than in the planar case.
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Ficure 3.9 Root-mean-square velocity fluctuations normalized by u: (a) Axial
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The skewness factors of the velocity fluctuations, shown in Figure 3.14, indicate
that there is a strong effect of the curvature on the streamwise and normal veloc-
ity Suctuations. As expected from the reflective symmetry of the Navier-Stokes
equations, the skewness of v, is nearly zero everywhere. Deviations from zero are
attributed to an inadequate statistical sample.

Away from the wall (y* > 40), the skewness of v, is positive and increases
slightly with increasing curvature, as was also observed by Luxton et al. (1984).
In this region there are also strong negative streamwise velocity fluctuations, as

denoted by the negative skewness of v;, which decreases with increasing curvature.

Increasing the curvature does not significantly affect the skewness of the axial
fluctuations (v;) close to the wall (y* < 20). On the other hand, for y* < 30,
there are significant differences in the skewness of the normal velocity fluctuations
(vr) between the three flows. While in the plane channel for 5 < y* < 30 the
skewness of vy is negative, in the transversely curved flows the region of negative
skewness diminishes and, for §/a = 11, the skewness of vy is positive throughout
the layer. For y* < 12, where fourth quadrant events dominate the Reynolds stress,
the skewness of v, is positive.

The flatness profiles of the velocity fluctuations are shown in Figure 3.15. Near
the wall (y* < 20), the flatness of v, and v, decrease sharply with increasing
curvature. The flatness of v, also decreases in the near-wall region (y* < 5). For
5 < y* < 30 the flatness of v, is not affected by the curvature and away from the
wall (y* > 30) it increases with increasing curvature.

3.4 The Vorticity

In cylindrical coordinates the vorticity components are given by (see for example
Batchelor [1967])

o, L (%) _ o
*7r or a9 )’

_10v: _ov,

AL (3.4.1)
fr r 00 0z’
oV, oV,
2 = 9z  or
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FiGuRe 3.16 Root-mean-square vorticity fluctuations normalized by v and ur: (a)
Axial intensity, (b) Normal intensity, (¢) Azimuthal intensity; —-— plane channel
(Kim et al. {1987]); cylinders with 8/a=>5and ---- §/a =11.
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§/a 0 5 11
rt 16.7 13.8 13.5

Yoz 21.0 19.7 20.1
v} 2.31 1.26 0.83
v+ 0.139 0.092 0.061
Rer 242.6 110.0 70.2

Table 3.3 Streamwise vortex parameters

The vorticity intensities normalized by the mean wall shear stress, shown in
Figure 3.16, decrease with increasing curvature. Unlike the velocity intensities,
the vorticity intensities do not collapse in the outer part of the layer when scaled
with the velocity scale u. As in the plane channel, the axial vorticity intensity
exhibits a near-wall local minimum and local maximum. Kim et al. (1987) linked
the locations and intensity of these extrema to the average position and strength of
the near-wall streamwise vortices. In their Rankine vortex model, the mean radius

is estimated from the difference in the positions of the two extrema (yhaz> Yiin)

Te = Ymaz = Ymin- (3.4.2 a)

The maximum value of the streamwise vorticity intensity is an estimate of the

strength (v) of the Rankine vortex, and the tangential velocity at the edge of the
vortex is given by

v =*rf. (3.4.2 %)

The location of the maximum of the streamwise intensity (y},4,) 1s an estimate
of the mean position of the center of the vortex core. From the circulation of the
near-wall Rankine vortex

27
I = / VeTedd, (3.4.2 ¢)
0

a0




a vortex circulation Reynolds number can be defined by

Rep = — =2nv}r}. (3.4.2 d)

< |~

These parameters of the near-wall streamwise vortices are listed in Table 3.3 for
the two transversely curved flows as well as the plane channel flow of Kim et al.
(1987). It is noteworthy that neither the core radius nor the position of the center
of these vortices changes appreciably with curvature, even though the strength of
the Rankine vortex is greatly reduced.

There are other important curvature effects on the vorticity intensities. Near
the wall (y* < 7), the normal vorticity intensity (@2'/?) is virtually unaffected by
the curvature, while the other vorticity components decrease. In the outer part of

the flow w2'/? = w?'/* as shown in Figure 3.17.

The inclination of the projection of the vorticity vector in (r, z)-planes is given
by

O, = tan™! (ﬂ) . (3.4.3)

w2z

The probability density functions (p.d.f.s) of Oy;, weighted by the magnitude of
the the projected vorticity vector (Moin & Kim [1985]), (w2 + w?)/< w2 +w? >,
are shown in Figures 3.18 a and 3.18 b. In the expression above, <> indicates
the mean of the quantity inside the brackets taken on the corresponding (z,8)
cylindrical surface. The following discussion refers to the weighted p.d.f.s, even
though all the features described below are also evident in the unweighted p.d.f.s.
The advantage of the weighting is that it enhances the contributions of the strong
vorticity fluctuations.

Throughout the discussion of the orientation of the vorticity vector, the reader
should bear in mind that the plane channel flow fields to which these results are
compared were from the large eddy simulation of Moin & Kim (1985), which was
performed for a Reynolds number of 13800 (based on the centerline velocity and
). At the closest point to the wall (y* = 4) investi_ ted by Moin & Kim (1985),
the distribution of O, is centered around 0° and +180° since the normal vorticity
must go to zero at the wall due to no-slip. In the transversely curved flows, this

effect is not discernable in the histograms of Oy, for y* > 2. At y* = 4, both
o1
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Figure 3.17 Root-mean-square vorticity fluctuations normalized by Vv and ur in
global coordinates for (a) 8/a=3 and (b) 6/a =11 — Axial intensity; ——=~ 42
imuthal intensity; —— Normal intensity.
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curved flows have distributions of O,, that peak around +90°. This distribution of
Oy persists up to y* = 25 in the §/a = 5 flow and up to y* =~ 40 in the §/a = 11
flow. Father from the wall, the the distributions gradually broaden, and by y* ~ 52
in the §/a = 5 flow and y* & 75 in the §/a = 11 the peak shifts to —135° and 45°
as was observed by Moin & Kim (1985). It is only beyond these points, which is
most of the domain, that the concentration of the distributions of ©,, shift to the
—135°? and 45° orientations.

In Moin & Kim (1985) the main mechanism of vorticity stretching in the plane
channel was attributed to stretching by the mean shear, which has its principal axis
at 45° with the direction of the mean flow. They also pointed out that, according
to Deissler (1969), when the normal and streamwise vorticity intensities are equal,
the direction of the maximum vorticity in a shear flow is at 45° to the mean flow.
In the transversely curved flows there is an increasingly thicker layer around the
cylinder, in which the vorticity has the £90° orientation. This suggests that, as
the curvature increases, vortical structures inclined at 45° to the mean flow are

probably more difficult to observe.

3.5 Instantaneous Turbulent Flow Structures

Contours of the streamwise velocity fluctuations (v;) on two (r, 8) planes (normal
to the mean flow) are shown in Figures 3.19 (plane I ) and 3.20 (plane I1;). In the
smaller curvature case (6/a = 5, see Figures 3.19 a and 3.20 @), the perimeter of
the cylinder is about 270 wall units and in the snap shots shown only three to four
low-speed streaks are observed around the cylinder. In the strongly curved case
(6/a = 11, see Figures 3.19 b and 3.20 b), the perimeter of about 140 wall units
apparently can only support two low-speed streaks. A better measure of the mean
spacing between the low-speed streaks is given by the velocity correlations in the
azimuthal direction at y* =~ 12, shown in Figure 3.21. The mean streak spacing is
about 100 wall units in both flows at this radial location. Note however that the
mean streak spacing has a nearly linear dependence on the distance from the wall

(y*) with a slope that increases with curvature (Figure 3.22).

Figures 3.23 and 3.24 show contours of the radial (wall-normal) velocity fluc-
tuations in the sanie planes as Figures 3.19 and 3.20 respectively. The constraint

imposed by the outer boundary conditions (Equation 2.1.5 b) on the radial motion
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Ficure 3.19 Contours of axial velocity fluctuations (v,), normalized by ur, on a
plane (I;) normal to the mean velocity: (a) §/a = 5 with contour levels from —5.2
ur to 3.55 ur; (b) 6/a = 11 with contour levels from —4.95 ur to 4.05 u,. The
contour increments of 0.25 ur. The solid contours denote the low-speed fluctuations
(v; < 0) and the dotted contours denote the high-speed fluctuations (v; > 0).
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(b)

Ficure 3.20 Contours of axial velocity fluctuations (v;), normalized by ur, on a
plane (I1I;) normal to the mean veiocity: (a) 6/a = 5 with contour levels from —5.2
ur to 3.3 ur; (b) 6/a = 11 with contour levels from —4.2 ur to 3.3 ur. The contour
increment is 0.25 ur. The solid contours denote the low-speed fluctuations (v. < 0)
and the dotted contours denote the high-speed fluctuations (v. > 0).
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Ficure 3.21 Azimuthal two-point correlations of the velocity fluctuations for (a)
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Ficure 3.22 The mean spanwise streak spacing At estimated from the two-point
correlations of v;: + plane channel (Kim et al. [1987]); cylinders: o, for §/a = 5
and a , for 6/a = 11.

of structures in the outer part of the layer is evident particularly in the §/a = 5 flow
(Figures 3.23 ¢ and 3.24 a). From the contour plots of v; and v,, regions of sweep

and ejection of fluid to and away from the cylinder surface can be easily identified.

In simulations of homogeneous turbulence with a small shear rate, Rogers &
Moin (1987) showed that, even though the contours of the streamwsie velocity
fluctuations tend to be elongated in the streamwise direction, no streaky structures
were observed. In studies of homogeneous turbulence at a high shear rate, Lee et
al. (1990) observed long streaks in the absence of a no-slip wall, and concluded
that it is the magnitude of the mean shear rate that determines whether streaks
are observed. These two studies suggest that the streamwise extent of the streaks
is controlled by the mean shear. A measure of the strength of the mean shear is

the shear rate parameter (Lee et al. [1990])

25¢2
st =21 (3.5.1)
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Figure 3.23 Contours of radial (wall-normal) velocity fluctuations (vr), normalized
by ur, on a plane (I;) normal to the mean velocity: (a) §/a = 5 with contour levels
from —1.8 ur to 1.3 ur; (b) 6/a = 11 with contour levels from —0.95 ur to 1.05
ur. The contour increment is 0.25 ur. The solid contours denote the negative
radial velocity (v < 0) and the dotted contours denote the positive radial velocity
(vr > 0).
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(b)

Ficure 3.24 Contours of radial (wall-normal) velocity fluctuations (v, ), normalized
by ur, on a plane (II;) normal tu the mean velocity: (a) é/a = 5 with contour
levels from —1.05 ur to 1.3 ur; (b) 6/a = 11 with contour levels from —0.95 u; to
1.29 ur. The contour increment is 0.25 u;. The solid contours denote the negative
radial velocity (v < 0) and the dotted contours denote the positive radial velocity
(v > 0). '
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Ficure 3.25 The shear rate parameter g* = 2¢%(dV :/dy)[e —-— plane channel
(Lee et al. [1990)); cylinders with §/a="5and---- 6/a =11

where S = dV:/dylw is the mean wall shear rate, q? is the turbulent kinetic energy
and € is the viscous dissipation. As the curvature Increases Figure 3.25 shows that
§* increases near the point of maximum production of turbulent kinetic energy
(y* = 12), suggesting that the axial length scale of the low speed streaks may

increase as the curvature increases.

The low speed streaks can be seen in the contour plots of vz on (z,6) surfaces
parallel to the cylinder at y* ~ 5, as shown in Figure 3.26. Note that the negative
contours seem to be more elongated in the streamwise direction for the §/a = 11

flow.

A measure of the anisotropy of the flow structures is the ratio of the streamwise
to the spanwise length scales (Lee et al. [1990}),

L&

*—-__——
L =31

(3.5.2)
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where L(*) and L®) are the axial and azimuthal integral scales of the quantity of
interest. For example, when based on v,, L(*) and L® are given by

L./2

L) (y) = / R, (y, 2)dz,

0
(3.5.3)

x
L(y) = (a+y) / Ry, v, (y,8)d9,
0

respectively. L* based on the streamwise velocity fluctuations, which characterize
the low speed streaks, was computed by Lee et al. (1990) for the plane channel;
their results are compared to the present simulations in Figure 3.27. Close to the
wall (y* < 10), L* is significantly increased with increasing curvature. Since the
spanwise length scale of the low-speed streaks in wall units is not greatly affected
by curvature, their streamwise length scale must increase with §/a. Away from the
wall (y* > 20), L* for the §/a = 5 cylinder has essentially the same value as in
the plane channel. In the larger curvature case (6/a = 11) L* away from the wall
(y* > 20) is twice as large as its counterparts for the §/a = 5 cylinder and the

plane channel.’

In addition to the low speed streaks, near-wall flows are also characterized by
near-wall vortical structures and internal shear layers. The near-wall streamwise
vortices and internal shear layers are characterized by the streamwise and the span-
wise vorticity fluctuations, w, and w,, respectively. The length scale ratios defined
in Equation 3.5.2, computed for both w; and wy, are shown in Figure 3.28. For
y* > 10, the length scale ratios for the two vorticity components are close to their
isotropic value of unity. Near the wall (y* < 10), where the mean shear is largest
(Figure 3.7), the length scale ratios of w, and w; increase with increasing curva-
ture. In particular, the higher near-wall L* based on w, suggests that the near-wall
streamwise vortices become longer as the curvature increases. Note also that both

vorticity length scale ratios are only affected by curvature near the wall (y* < 10).
The near-wall shear layers that develop at the interface of the low and high speed

flow regions are common in the two transversely curved flows as shown in Figures
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Ficure 3.27 The length scale parameter L* based on v,: —-— plane channel (Lee
et al. [1990]); cylinders with 6/a=>5and ---- §/a = 11.
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Figure 3.28 The length scale parameter: L* based on w, for cylinders with
—-—4é6/a =5 and ---- é§/a = 11; L* based on w; for cylinders with —— §/a = 5
and oo 6/a =11.
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(b)

Ficure 3.29 Contours of axial (streamwise) vorticity fluctuations (w; ), normalized
by ur and v, on a plane (I;) normal to the mean velocity: (a) §/a = 5 with contour
levels from —0.34 u2/v to 0.5 u2/v; (b) §/a = 11 with contour levels from —0.3
u2 /v to 0.38 u2/v. The contour increment is 0.04 u7/v. The solid contours denote
the negative vorticity (w; < 0) and the dotted contours denote the positive vorticity
(wz > 0).
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(b)

Ficure 3.30 Contours of axial (streamwise) vorticity fluctuations (w;), normalized
by ur and v, on a plane (II;) normal to the mean velocity: (a) é/a = 5 with
contour levels from —0.34 u2/v to 0.5 u2/v; (b) 6§/a = 11 with contour levels from
—0.26 u2/v to 0.22 ul/v. The contour increment is 0.04 u2/v. The solid contours
denote the negative vorticity (w; < 0) and the dotted contours denote the positive
vorticity (w; > 0).
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(b)

FiGURE 3.33 Contours of azimuthal vorticity fluctuations (wy), normalized by ur
and v, on a plane gI >) normal to the mean velocity: (a) é/a =5 with contour
levels from —0.58 u2/v to 0.54 u%/v; (b) é/a = 11 with contour levels from ~0.66
u2/v to 0.5 u?/v. The contour incremert is 0.04 u2/v. The solid contours denote
the negative vorticity (ws < 0) (aligned with the mean vorticity) and the dotted
contours denote the positive vorticity (ws > 0).
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(b)

FiGure 3.34 Contours of azimuthal vorticity fluctuations (ws), normalized by u,
and v, on a plane (II;) normal to the mean velocity: (a) §/a = 5 with contour
levels from —0.38 u2/v to 0.5 u/v; (b) §/a = 11 with contour levels from —0.9
ur/v to 0.46 u/v. The contour increment is 0.04 u2/v. The solid contours denote

the negative vorticity (ws < 0) (aligned with the mean vorticity) and the dotted
contours denote the positive vorticity (ws > 0).
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3.31 (plane I;) and 3.32 (plane II;) and have features similar to those of the plane
channel. These two figures suggest that the higher curvature (§/a = 11) flow is
more quiescent in the outer region in agreement with the lower velocity correlation
coeficient (Figure 3.6). In Figures 3.33 and 3.34, cross sections of the internal shear
layers by (r,0) planes show that the shear layers have large azimuthal (spanwise)
length scales relative to the cylinder radius. As the curvature iucreases the ratio
of the spanwise length scale of the shear layers to the cylinder radius increases.
These contour plots also suggest that the shear layers have a milder transverse
curvature than the cylinder. Cuts of these shear layers by (z,8) surfaces parallel
to the cylinder (Figure 3.35) at y* = 15 show a characteristic arrow shape that is
more noticeable in the higher curvature (§/a = 11) flow. Such arrow shapes are
geometrically consistent with nearly planar inclined shear layers intersected by a

cylindrical surface.

Kim (1989) demonstrated that the near-wall streamwise vortices contribute sig-
nificantly to the source term of the pre..ure Poisson equation. As the curvature
increases, there is an additional important source of pressure fluctuations (see Sec-
tion 4.1, Figure 4.3) associated with the strong near-wall radial (wall-normal) vor-
ticity fluctuations (Figures 3.18 @ and 3.18 b). Contours of the radial vorticity
fluctuations in the same (r,8) planes are shown in Figures 3.36 and 3.37. As in
the plane channel, near the wall the regions where the radial vorticity fluctuations
change sign are well correlated with the locations of the low-speed streaks but not
necessarily with the streamwise vortices. Contours of the pressure in the same
(r,0) planes (Figures 3.38 and 3.39) show low pressure regions well correlated with
the locations of the near-wall streamwise vortices. Apparently the normal vorticity
fluctuations become a more prominent feature simply because, as the curvature
increases, more of the turbulent kinetic energy is in the streamwise velocity fluc-
tuations (Figure 3.4). Contours of the normal vorticity are shown in Figure 3.40
on (z,0) surfaces parallel to the cylinder at y* = 15. In the §/a = 11 flow (Figure
3.40 b), the strong posicive and negative contours of w, are well correlated with the

intersections of the cylindrical surface at y* ~ 15 with the wall shear layers (Figure
3.35 b).
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(5)

Ficure 3.36 Contours of radial (wall-normal) vorticity fluctuations (wr ), normalized
by ur and v, on a plane (I;) normal to the mean velocity: (a) §/a = § with contour
levels from —0.38 u2 /v to 0.46 ul/v; (b) §/a = 11 with contour levels from ~0.3
u2/v to 0.38 u2/v. The contour increment 1s 0.04 u7/v. The solid contours denote
the negative vorticity (wr < 0) and the dotted contours denote the positive vorticity
(w'- > 0).
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(b)

Figure 3.37 Contours of radial (wall-normal) vorticity fluctuations (wr ), normalized

by ur and v, on a plane (II;) normal to the mean velocity: (a) §/a = 5 with contour

levels from —0.46 u /v to 0.5 u2/v; (b) §/a = 11 with contour levels from —0.26

u2/v to 0.22 u}/v. The contour increment is 0.04 u2 /v. The solid contours denote

Ehe neg3tive vorticity (wr < 0) and the dotted contours denote the positive vorticity
wy > 0).
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(a)

(%)

Ficure 3.38 Contours of the pressure fluctuations (p), normalized by p and ur,
on a plane (I;) normal to the mean velocity: (a) §/a = 5 with contour levels from
—4.1 pu? to 2.1 pu?; (b) 6/a = 11 with contour levels from —2.5 pu} to 1.5 pu}.
The contour increment is 0.2 pu’. The solid contours denote the negative pressure
(p < 0) and the dotted contours denote the positive pressure (p > 0).
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Ficure 3.39 Contours of the pressure fluctuations (p), normalized by p and u, on
a plane (II,) normal to the mean velocity: (@) §/a = 5 with contour levels from
—2.5 pu? to 1.5 pul; (b) §/a = 11 with contour levels from —1.7 pu? to 0.5 pul.
The contour increment is 0.2 pul. The solid contours denote the negative pressure
(p < 0) and the dotted contours denote the positive pressure (p > 0%.
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CHAPTER 4

Pressure Fluctuations

Wall pressure fluctuations affect the acoustic characteristics (both radiation and
detection) of underwater vehicles. In addition, in transversely curved turbulent
flows over sonar devices, it is important to identify the pressure signals generated
by the turbulent flow field. The aim of this chapter is to describe the effects of
transverse curvature on the wall pressure fluctuations when both the outer and
inner parts of the flow are affected by the curvature of the wall. For this flow
regime (large 6/a and small a*), there is only limited experimental data available

on the statistical properties of the wall pressure fluctuations.

For comparison, the spatial and temporal spectra of the plane channel wall
pressure fluctuations were also calculated from a database generated by Kim et
al. (1987) and Choi & Moin (1990). As noted earlier, the Reynolds number of the
plane channel flow and those of the present flows are similar, and thus differences

in the statistical characteristics can be ascribed to the transverse curvature alone.

The wall pressure database on which the results of this chapter are based was
generated after the flow had reached statistical steady state (Section 3.2). Addi-
tional integration of the governing equations for wall pressure statistics were carried
out for a period of 12.8 §/ur time units in the §/a = 5 flow and for 8.6 time units
in the §/a = 11 flow.

The effects of transverse curvature on the sources of pressure fluctuations are
discussed in Section 4.1. The computational method used to obtain the space-time
characteristics of the wall pressure data is described in Section 4.2. Section 4.3
contains the spatial spectra of the wall pressure fluctuations and in Section 4.4 the
two-point correlations are presented. The fractional contributions of various flow
regions to the wall pressure are studied in Section 4.5. The temporal spectra are
presented in Section 4.6. Two-dimensional spectra and correlations are discussed in
Section 4.7. Finally, Section 4.8 treats the convection velocity of the wall pressure
fluctuations.
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P2 (pu2)

Ficure 4.1 Root-mean-square pressure normalized by ur in global coordinates:
—-— plane channel (Kim [1989}); cylinders with 6/a=>5 and ---- §/a =11.

4.1 Pressure Source Terms

The Poisson equation for the pressure field is obtained from the divergence of
the Navier-Stokes equations (Equation 2.1.1),

V2 __zaV,av,_(av, 2_2@(9&_,,)
P = e Bz ar ror \ag
(4.1.1 a)
Lo 1 (B NP 200:0u  (0v:)°
or 0z r2\ 06 r r 080 Oz 0z )

Boundary conditions for the pressure are obtained by evaluating the radial momen-

tum equation at both edges of the domain,

dp

or

_ L Por
—RCT 67'2

Op

’ or

r=a+l

Rt La“. (4.1.1b)

[ 1 2 a‘U' (] 2

r=a r=a
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FiGure 4.2 Profiles of the root-mean-square value of the pressure source terms

normalized by v and ur: (a) linear contribution: cylinders with 6/la =5
and ---- §/a = 11; (b) nonlinear contribution: cylinders with 8/a =5 and
---- §/a = 11; total source terms: cylinders with —— §/a = 5 and —-— §/a = 11.
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The first term on the right hand side of Equation 4.1.1 ¢ represents the pressure
source that results from the linear interaction of the mean shear with the turbulence.
The next six terms are the pressure source terms that result from the nonlinear

Interactions within the turbulent flow field.

The pressure intensity normalized by the mean shear, shown in Figure 4.1, de-
creases across the layer with increasing curvature. In particular, the near-wall
maximum of the pressure intensity is reduced by increasing the curvature. This
suggests that the structures that are respousible for the maximum in the pressure

intensity are weakened.

Contrary to what was generally accepted, Kim (1989) found that in turbulent
channel flow the turbulence field interactions constitute the strongest sources of
pressure fluctuations. In fact, the magnitude of the mean-square of the linear
source term was about five times lower than the magnitude of the mean-square
of the nonlinear source term. In the transversely curved turbulent flows reported
here, the ratio of the magnitude of the mean-square of the nonlinear to the linear
pressure source terms is large (Figure 4.2), even though, as the curvature increases,

both sources of pressure fluctuations (linear and nonlinear) decrease.

In the plane channel the maximum of the mean square of the nonlinear terms
occurs at about y* = 20, which is the same as the mean position of the near-wall
vortices as well as the position of the maximum of the pressure intensity (Kim
[1989]). In the transversely curved flows, the maximum of the pressure intensity is
weakened as the curvature increases and at about the same position as in the plane
channel flow (y* ~ 20, Figure 4.1). As the curvature increases, the average strength
of the near-wall vortices is weakened while the average position of the vortex cores

remains the same (y* = 20) (see Section 3.4).

In order to associate the pressure intensity with the sources of pressure fluctu-
ations in the flow, the various contributions to the nonlinear source terms of the

pressure are examined (Figure 4.3). As in the plane channel the most important

2 (?ﬂ _ v,) v, (4.1.2)

nonlinear source term is

which contains significant contributions from the near-wall streamwise vortices.

Note also that in both flows this source term develops near-wall (y* = 5) local
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Ficure 4.3 Profiles of the root-mean-square value of the nonlinear contributions to

the source terms normalized by v and u;: (a) 6/a = 5, (b) §/a = 11; (9v,0r)?,
-------- (2/7)(8v, /80 — vy )(Bvs fr), —-— (1/7%)(Bvs/80 + vy)?, —--— (8v,/82)?, ----
2(8v, /0r)(0v,/82), —-— (2/r)(Bv,/38)(Dve/Dz).
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&/a 0 5 11
L7(ur/6) 9.36 12.9 8.6
Ly(ur/5) 1.20 0.806 0.659
Ats(ur/b) 3.75 x 1073 2.52 x 1073 2.06 x 1073
Ats(u2/v) 0.675 0.539 0.494
Aw(é/ur) 5.2 7.8 9.5

N; 2560 5120 4160

Table 4.1 Temporal resolution parameters

extrema. Near the wall vorticity of opposite sign to the primary vortices may be

responsible for this behavior.

Figure 4.3 also shows that, as the curvature increases, another nonlinear term,

2 9vz 0v
r 08 9z’

plays an increasingly important role in the pressure fluctuations. Note that the

(4.1.3)

factors in this product are the two velocity gradients that define the radial compo-
nent of the vorticity (Equation 3.4.1). As the curvature increases, strong normal
vorticity fluctuations (with respect to the local streamwise vorticity fluctuations)
become increasingly more common farther away from the wall (when measured in
wall units).

4.2 Computational Considerations

The wall pressure was sampled at intervals At; for a total period Ly, resulting
in N, time samples. In the temporal analysis a window of length L; is used. These
parameters are given in Table 4.1 for the three simulations under consideration.
For the sake of siinplicity only the one-dimensional spectra are discussed. The

computation of the two-dimensional spectra is identical.
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4.2.1 Spatial Spectra

The spatial spectra of the wall pressure fluctuations are obtained by averaging

over all Ng samples. Thus the spectra in the axial and azimuthal directions are

given by
9 N, Nof2 T
Epp(k:) = ——Y_ | D bulkz,mb/a,t;)pl(kz,mé/a,t;)|,
Ak, N
J=1 m=—Na/2 ]
(4.2.1)
9 N, [N./2 ]
Epp(ks) = m,}-:l kz—%ﬁw(zwk/Lz,k,,tj)ﬁw(27rk/Lz,k,,tj) ,

respectively. The Fourier transform of py(z,0,t;) is puw(k:, ke, t;) and py,(kz, ke, t;)
is its complex conjugate. Note that the mean-square wall pressure is given by

N;/2 Ny/2
Py = Akz Y Epp(2nk/L;) = Aks Y Epp(mé]a). (4.2.2)
k=0 m=0

4.2.2 Temporal Spectra

In the calculation of the temporal characteristics of the wall pressure the same
techniques were used as in Choi & Moin (1990). The total length of the temporal
domain for each of the flows (LT), is divided into m overlapping intervals (with
50% overlap) of equal length (L;). The length of each interval is thus given by

2L
L= il (4.2.3)

The choice of m = 31 and m = 25 was made for the §/a = 5 and §/a = 11 flows

respectively, resulting in 320 samples in each interval. Since the wall pressure is
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not temporally periodic in any of the intervals, the data is tapered at the edges of
each interval by a window function fy,(¢), according to

Puw(t) = fw(t)Pw(t)a 0<t< Ly, (4-2-4)

where pw(t) denotes the wall pressure at a given time instant. For the sake of
simplicity, in this section, the spatial dependence of the wall pressure fluctuations
is omitted. In the analysis of the wall pressure for the plane channel Choi & Moin
(1990) experimented with several window functions and reported no significant
difference in the resulting temporal spectra. In the present calculations the Hanning

window function

fuw(t) = % - —;-cos (2L—7rtt) , (4.2.5)

is used. The properties of fy(t) as a window function are discussed by Harris

(1978).

The temporal spectrum is estimated from
1 & .
$pp(wj) = 71— ) Pulw;)Bly(wi), (4.2.6)
i=1

where Py, is the Fourier transform of py, in the i** interval. The discrete frequencies,
wj, are given by
27 . .

wj = -L—t—J, 71=0,1,2,...,.M/2, (4.2.7)
where M = 2N;/(m + 1) is the number of samples in the interval. In general,
because of the windowing, the variance of py, will not be equal to the variance of
pw. To preserve the root-mean-square (r.m.s.) value of py the spectrum ¢yp is
rescaled so that

M/2

Ph=0w Y épp(w;). (4.2.8)
i=—M/2
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FiGure 4.4 Signal of the wall pressure fluctuations normalized by ?%2: (a) plane
channel; cylinders with (b) 6/a = 5; (¢) 6/a = 11.
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6/a 0 5 11
P2 J(pul) 1.54 0.84 0.58
S(pw) —0.03 —0.70 —~0.78
F(pw) 5.16 7.16 6.18

Table 4.2 Wall pressure parameters.

4.3 Spatial Spectra

Figure 4.4 shows a sample of the time traces of the wall pressure fluctuations
normalized by their r.m.s. values. Note that, as the curvature increases, the high
frequency content of the fluctuations is weakened. Apparently the different appear-
ances of the wall pressure fluctuations in the two transversely curved flows, does
not noticeably affect the flatness and skewness values (Table 4.2).

The strong dependence of the wall pressure intensity on the Reynolds number,
documented by Choi & Moin (1990), is not a factor in the comparison of Table 4.1
because the Reynolds numbers of the three simulations are similar. In measure-
ments of the wall pressure intensity in a boundary layer Willmarth & Yang (1970)
concluded that the transverse curvature did not have a significant effect. However,
this result is for a mild transverse curvature (§/a ~ 2, a* ~ 4500), in which only
the outer part of the boundary layer was affected by the curvature. In addition, any
small curvature dependence that was present in their study was probably overshad-
owed by the strong Reynolds number dependence of the wall pressure intensity. In
subsequent wall pressure measurements on a cylinder (Willmarth et al. [1976)), for
which é/a ~ 4, the value of the wall r.m.s. pressure was not reported.

The one-dimensional wall pressure spectra as a function of the azimuthal (span-
wise) and axial (streamwise) wave-numbers are shown in Figure 4.5, along with
their planar counterparts (Choi & Moin [1990]). Note that the spanwise spectra
(Figure 4.5 a) is not affected by the transverse curvature in the high wavenumber

range. In the low wavenumber range the energy of the spanwise spectrum decreases
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Ficure 4.6 Axial (streamwise) spectra of the wall pressure fluctuations normalized
by 6; and u,: —-— plane channel (Choi & Moin [1990]) (6/a = 0, §; = §); cylinders
with —— §/a =5 and ---- §/a = 11.

with increasing curvature. This suggests that the curvature mostly affects struc-
tures with large spanwise length scales (small ék,) than those with small spanwise
length scales (large 6k;). The streamwise spectral density of the wall pressure
fluctuations decreases significantly with curvature for all scales (Figure 4.5 b). As
expected, the three flows display a negligible wave-number range with the —1 slope
in the streamwise spectrum. This feature is probably a result of the low Reynolds
numbers of the three flows. The high wave-number range of the streamwise spec-
trum is associated with small structures and has a —5 slope in the planar case. In
the transversely curved flows the axial spectra exhibit steeper siopes in the high

wave-number range, indicating a weakening of structures in the buffer layer (Blake
[1986]) that contribute to the wall pressure fluctuations.
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In a transversely curved boundary layer, the volume of turbulent flow that must
be supported per unit wall surface area is larger than in the plane channel case by
a factor of 1 + §/(2a). This is a natural curvature parameter. It was found that
when scaled with the curvature dependent length scale given by

6
=6 — 3.
sr=sf(1+2), w2

the axial (streamwise) spectrum of the wall pressure fluctuations of the plane chan-
nel flow and of the transversely curved flows collapse in the high wave number
range, as shown in Figure 4.6. This length scale is related to the velocity scale de-
fined in Section 3.2.3 (Equation 3.2.5, see Section 4.6). Spectra normalized with
—31/2 . .

P’ are shown in Figure 4.7.

The two-dimensional spatial wall pressure spectra are shown in Figure 4.8. Asin
the planar case (see Fig. 12 of Choi & Moin [1990]) the transversely curved spectra
are elongated in the the spanwise direction. However, as the curvature increases the
azimuthal (spanwise) elongation of the spectrum increases. In addition the energy

of the large structures (small 6k, or 6k,) decreases with increasing curvature.

4.4 Two-point correlations

In the two previous studies of the wall pressure fluctuations in boundary layers
with transverse curvature (Willmarth & Yang [1970] and Willmarth et al. [1976])
it was shown that, as the curvature increases, the wall pressure becomes better
correlated around the cylinder. This trend is also evident in the present flows as
shown in Figure 4.9 a. Note, however, that in viscous units the azimuthal (spanwise)
correlation length decreases with increasing curvature (Figure 4.9 b). In the axial
two-point correlations (Figure 4.10), the zero-crossing point, Rpp(z/6*) = 0, is
reached at z/6* = 3.9 in the §/a = 5 flow and at 2/6* = 4.6 in the §/a = 11
flow. Both values are higher than the value of 2 reported by Willmarth & Yang
(1970) and Wilmarth et al. (1976), however, when compared with the value of 3.4
reported by Choi & Moin (1990) for the plane channel, a trend towards larger axial
length scales with increasing curvature is discernible.
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For small separations, the wall pressure correlation contours in the planar case
(Willmarth et al. [1962], Choi & Moin [1990]) are nearly circular and, as the sepa-
ration increases, the ratio of the spanwise to the streamwise length scales increases.
In contrast with the planar wall pressure correlation contours, in a transversely
curved flow Willmarth & Yang (1970) (6/a = 2 and a* = 4500) report wall pressure
correlation contours which, for large separations, are compressed in the spanwise
direction. However, the §/a = 4 measurements of Willmarth et al. (1976) seem to
be inconsistent with this apparent trend. Figure 4.11 shows the correlation contours
of the wall pressure fluctuations for the plane channel low. For large separation the
correlation contours are elongated in the spanwise direction. In contrast, Figure
4.12 shows that, as the curvature increases, there is a significant increase in the
ratio of the axial to azimuthal length scales for all separations.
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for plane channel (Choi & Moin [1990]) as a function of the streamwise (r}) and
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of 0.1.

4.5 Green’s Function Representation

Further insight into the spatial structure of the the wall pressure fluctuations
can be obtained by representing the pressure field in terms of the Green'’s function
of the Poisson operator.

From the analysis presented in Appendix B, in transversely curved flows the
Fourier coeflicient of the wall pressure fluctuations are given by

a+l | R
B(r) = / G(r,ro)f(ro)rodrot

(4.5.1)
dp

. - dp
ag(r,a)$ —(a+1)G(r,a + I)EI;) ,

r=a+1

r=a

where r, is the radial position of the source, f denotes the Fourier transform of

the source of the pressure Poisson equation (Equation 4.1.1 @) and G is the Green’s
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function of the Laplacian operator in cylindrical coordinates with derivative bound-
ary conditions. The global nature of the pressure field is clear in Equation 4.5.1
due tu the volume integral of Q(r, r0)f(ro) over the whole flowfield. From Equation
4.5.1 the contributions to the wall pressure fluctuations (ﬁr;) from sources located

in the volume close to the cylinder surface at a < r, < rs are given by
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Ficure 4.13 Fractional contributions to the root-mean-square wall pressure fluc-
tuations from sources located at y, € [0,ys]: —-— plane channel; cylinders with
é/a = 5 and ---- §/a = 11 (ys = rs — a). The result is normalized by the
total wall pressure intensity.

by = [ Saro)frorodrot
(4.5.2)

A dp A dp
ag(a, a)‘—ig —rsG(a, rs)-jiz

r=a r=r,

Likewise, the contributions of the outer part of the volume of the flow (rs < ro <

a + 1) to the wall pressure fluctuations (ﬁr;) are given by

a+l | .
by= [ Glaraftrorodrot
T

8

(4.5.3)
~ (a+1)G(a,a + 1)—d£

r=rg dr r=a+1

o dp
rsG(a, r,;):;z3
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Ficure 4.16 Contour plot of two-point correlations of the contributions to the wall
pressure fluctuations for §/a = 11 from flow perturbations in the interval (a) [a, rsJ
and (}) [rs,a + 1] as a function of the axial (r} - streamwise) and azimuthal (a*
- spanwise) separations. The contour levels are from 0.1 to 0.9 with increments of
0.1 and y5 = 0.2 (y} =r} — a* = 49).

Similar expressions can be obtained for the plane channel. The root-mean-square
of the contributions to the wall pressure fluctuations normalized by the total wall
r.m.s. pressure is shown in Figure 4.13 as a function of the cutoff rs. For the
two transversely curved flows as well as the plane channel more than 80% of the
wall r.m.s. pressure fluctuations are produced by the inner part of the domain
(0 £ ro € ys =rs—a = 0.2). Note that, as the curvature increases, there is a slight
increase in the wall pressure fractional contributions from the near-wall (ys < 0.2)
part of the flow.
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Small separation correlation contours result from small scale pressure fluctua-
tions typically associated with the inner part of the boundary layer, while the large
separation correlation contours have significant contributions from large scale mo-
tions in the outer part of the boundary layer. This is emphasized in Figure 4.14
which shows the plane channel two-point correlations of p“y; and ﬁys+ for ys =~ 0.2.
It is clear that the spanwise elongation of the planar wall pressure correlation con-
tours is due to disturbances in the outer part of the layer (Figure 4.14 b). Note
also that for this cutoff (ys = 0.2) the shape of the planar wall pressure correlation
contours due to the inner part of the flow are slightly elongated in the streamwise
direction (Figure 4.14 a).

The two-point correlations of 131,; and ﬁr: for ys = rs —a = 0.2 are shown in
Figures 4.15 and 4.16 for §/a = 5 and for §/a = 11, respectively. In both cases
the two point correlations of the wall pressure fluctuations due to contributions
from the volume close to the cylinder have a streamwise aspect ratio similar to
that shown in Figure 4.12 for the contributions of the whole flow. On the other
hand, in the §/a = 5 flow, the shape of the correlation contours of the wall pressure
fluctuations due to the outer part of the flow (yo € [ys = 0.2,1.0], see Figure
4.15 b) have nearly circular shapes for small separations and a spanwise orientation
for large separations. The same trend is also evident in the §/a = 11 flow, although,
a streamwise orientation is discerniblc in the wall pressure correlation contours due
to sources in the outer part of the flow (Figure 4.16 b). Wall pressure correlation
contours due to the outer part of the flow, obtained for larger values of the cutoff
(ys > 0.2, not shown), become increasingly oriented in the spanwise direction in
both transversely curved flows (6/a = 5 and 6/a = 11), however, the spanwise
stretching effect of the outer part of the flow on the wall pressure correlations

decreases as the curvature increases.

The fact that, in the three flows, the wall pressure correlations due to the near-
wall part of the flow are elongated in the streamwise direction implies that the
near-wall structures are responsible for this shape. The curvature trend shown in
Figures 4.14 through 4.16 is consistent with the length scale parameter L* based on
v, (see Section 3.5, Figure 3.25) which suggests that relative to the plane channel,
as the curvature increases, the ratio of the streamwise to spanwise length scales
increases near the wall for both flows and away from the wall in only the §/a = 11

case. Thus, it is conjectured that, as the curvature increases, the inner part of the
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flow plays an increasingly important role in determining the length scales of the
wall pressure fluctuations.

4.6 Temporal Spectra

The temporal spectra of the wall pressure fluctuations of the two transversely
curved turbulent flows is compared to their planar counterpart in Figure 4.17 a. As
expected from the streamwise one-dimensional spectrum, the temporal spectrum

decreases at all frequencies with increasing curvature.

In the wall pressure temporal spectra measurements of Willmarth & Yang (1970)
and Willmarth et al. (1976), a reduction in the intensity of the high frequency
range was also observed. However, the effect of curvature on the inner part of the
boundary layer in their flow regime (high a*), and therefore on the high frequency
range of their wall pressure temporal spectra should have been negligible. This
apparent inconsistency in the experimental data may be related to probe spatial

resolution problems, which were not corrected for.

Using the curvature dependent length scale defined in Section 4.3 (Equation
4.3.1), a curvature dependent time scale (67 /ur) can be defined:

_9 (1 + _5_), (4.6.1)

When scaled with this curvature dependent time scale the temporal spectrum of the
wall pressure fluctuations of the two transversely curved flows collapse with their
planar counterpart in the high frequency range (Figure 4.17 8). Also note that this
time scale is related to the velocity scale u defined in Section 3.2.3 (Equation 3.2.5)
by

5f 6

ur " uGE =) (462)
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4.7 2-D Spectra and Correlations

The frequency/axial (streamwise) wave-number power spectra, ®pp(k:,w), for
the two transversely curved flows are shown in Figure 4.18. As has been the case
throughout this study the intensity decreases as the curvature increases for all
frequencies and axial length scales. In both cases the narrow aspect ratios of the
iso-contours denote well defined convection velocities.

The space-time correlation of the wall pressure fluctuations is given by the
Fourier transform of the frequency / streamwise wave-number spectrum,

Rpp(rz,me) = ) Y Bpp(kz,w)e™rtemthars, (4.7.1)
k, w

and is shown in Figure 4.19 for the two transversely curved flows. When measured in
viscous units, the axial length scales of the auto-correlation contours are virtually
unaffected by curvature, however, the temporal extent increases with curvature.
Again, clearly defined convection velocities are evident from the oblong shape of
the contours.

4.8 Convection Velocity and Taylor’s Hypothesis

The idea that structures in the flow are convected at a velocity close to the free
stream velocity is an attractive one which has received substantial experimental
support in planar boundary layer flows. Experimentally, it is typically easier to
measure temporal spectra, from which streamwise spectra are obtained by invoking
the concept of a convection velocity and Taylor’s hypothesis.

Several definitions for the convection velocity have been proposed in the litera-
ture. The most common are obtained from the frequency streamwise wave-number

spectra, ®py(k;,w), or from its Fourier transform, Ryp(rz,7¢).

For example, the convection velocity as a function of the axial (streamwise)
separation (r;) for a given time delay (¢, ), is defined as the ratio r;/r¢, for which
Rpp(rz,7e,) is a maximum,

OR
Uelrs)= 75 G 2Aram) =0, (4.8.1 a)

e 6 =t
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Likewise, the convection velocity can be defined as a function of the temporal

separation (r) according to

Ue(ry) = 2, %(rz,rt) =0. (4.8.1 b)

Tt aTt r,=r,,

The convection velocities of the wall pressure fluctuations computed from Equa-
tions 4.8.1 are shown in Figure 4.20. The convection velocities are lower than in the
plane channel. As the axial separation increases, the convection velocity increases
to about 0.7U,, for 6/a = 5 and to about 0.65U,, for §/a = 11. Note, however,
that as a function of the temporal separation the convection velocity is practically
constant in both flows (U, ~ 0.6U.,).

The convection velocity can also be defined as a function of the streamwise
wave-number (Wills ([1970)),

=—0 = 4.8.
UC(kZ) kz y aw (kz,w) ww. 0, ( 8 2 a)
and as a function of the frequency,
=- =0. 4820
UC(w) ch, akz (kl,w) 1=Kz, 0 ( 8 )

When expressed as a function of the axial wave-number (Figure 4.21) the con-
vection velocity is about 0.6U,, for large wave-numbers in all three flows. Likewise,
as a function of frequency the convection velocity (Figure 4.22) is about 0.65U,,
in the curved flows, which is lower than the value of about 0.8U,, for the plane
channel (Choi & Moin [1990)).

In the cylinder flows, the various convection velocities show little variation among
themselves. In the following a constant value of the convection velocity, 0.65U.,,
is used to scale the temporal spectrum (¢pp(w)) into the axial spectrum (Epp(k;))
according to Taylor’s hypothesis:

Ppp(w w
EPPc(kzc) = _p’l}_(c’—)’ kze = ?c (4.8.3)
108




Uc(f'z)/Uoo

()

, e ,
0.0 50 10.0 160 200 25.0 30.0
ry /8

1.0

0000 QQ
OOOQQEAAABGL

000N OOCO
K O Moooh.-l bho

¥ 'M, OO

AqR . At s R T NI
% A e T L . PRt PN

Uc("t )/Uoo

Ficure 4.20 Convection velocity normalized by U, as a function of the (a) axial
(streamwise) separation (r,/6*) and of the () temporal separation (r}); cylinders:
o,for §/a =5 and a , for §/a = 11.
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Ficure 4.21 Convection velocity normalized by U,, as a function of the streamwise
wave number: cylinders: o, for §/a = 5 and a , for §/a = 11.
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Ficure 4.22 Convection velocity normalized by U, as a function of frequency:
cylinders: o, for §/a = 5 and & , for §/a = 11.
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Comparison of ¢pp(w) with Epp (k:c) (Figure 4.23) shows that Taylor’s hypothesis
is a better assumption for low frequencies, as was also observed in the planar case

(Choi & Moin {1990]).

The decomposition of the two-dimensional spectra ®pp(kz,w) and ®pp(ks,w) into

their streamwise and spanwise similarity functions F;(k,U/w) and Fy(k,U./w), are

given by
Bpp(kz,w) = ¢pp(w)Uciw)FZ(szc/w),
(4.8.4)
Ppp(ko,w) = ¢pp(w)Ucu()w)Fo(koUc/w),

respectively (Corcos [1964]). Unlike the plane channel where a self similar behavior
in the spanwise direction was observed, no self similar behavior is apparent in either
F,(k;Ug/w) or Fy(kyU,/w), as shown in Figures 4.24 and 4.25.
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CHAPTER 5

Summary and Conclusions

The main objective of this study was to investigate the space-time characteristics
of turbulent lfows over long towed cylinders. The main conclusions are recapitulated
in this chapter.

For a sufficiently large ratio of the cylinder radius to the boundary layer thickness
(6/a) curvature affects the outer part of the layer. If the inner flow is to be influ-
enced by the curvature then the ratio of the cylinder radius to the viscous length
scale a/(v/ur) must also be small. Two simulations of transversely curved turbu-
lent flows were successfully performed. The curvature parameters were §/a = 5
(a* = 43) and §/a = 11 (a* = 21).

In agreement with experimental measurements, as the curvature increases, the
skin friction coefficient (Cy) increases and the slope of the mean velocity profile in
the logarithmic region decreases. When a* is sufficiently small, the viscous region
of the velocity profile deviates slightly from the planar law of the wall.

Measurements of the turbulence intensities and the Reynolds shear stress (when
scaled with wall variables) show a decrease with increasing curvature in the outer
part of the flow. These outer flow characteristics are reproduced by the present
computations. In addition, and unlike their experimental counterparts, close to the
wall, the computed turbulence intensities and the Reynolds shear stress decrease
with increasing curvature. The reason for the difference is attributed to the large
values of at in most experiments, where only the outer layer is affected by the cur-
vature. The reduction of the turbulence intensities with curvature is not the same
among different components and, as the curvature increases, more of the turbulent
kinetic energy is in the streamwise velocity fluctuations. This is a result of the
lower intercomponent energy transfer due to the lower pressure strain correlations

in the Reynolds stress budget equations of the transversely curved flows.

A new local velocity scale, which is a function of both the curvature parameter

6/a and the distance to the wall y/§ has been obtained from the mean streamwise
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momentum equation. When normalized with this new velocity scale some turbu-
lence statistics of the plane channel and the transversely curved flows collapse in
the outer part of the flow (y* > 30). Near the wall the new velocity scale is unable
to account for all the differences observed.

As the curvature increases, the correlation between the streamwise and wall
normal velocity increases near the wall. In the higher curvature case (§/a = 11)
the correlation coefficient decreases in the outer layer indicating a tendency towards
stabilization. However, both flows computed are fully turbulent and statistically
steady.

All vorticity intensities decrease with increasing curvature throughout the layer,
with the exception of the normal vorticity intensity, which is not affected near the
wall (y* < 7). The axial (streamwise) intensity suggests that, as the curvature
increases, the near-wall streamwise vortices are weaker but have a radius similar to
that of the plane channel. Their position away from the wall is also not affected by
the curvature. As the curvature increases, the vorticity near the wall tends to be

increasingly oriented in the direction normal toc the wall.

Another effect of the transverse curvature is the longer streamwise length scale
of the low-speed streaks. The mean spanwise spacing of the low-speed streaks is
slightly less 100 wall units in both transversely curved flows at y* ~ 12. Thus, as
the circumference of the cylinder decreases (as the curvature increases), there are

fewer low-speed streaks around the cylinder.

Near-wall internal shear layers are common in the two transversely curved flows
computed. As the shear layers lift off from the surface of the cylinder they have

large spanwise leng’l: scales relative to the cylinder radius.

The linear and nonlinear sources of pressure fluctuations are strongly reduced as
the curvature increases. The sources associated with streamwise vortices are still
the strongest, however, as the curvature increases, a new source of pressure fluctua-
tions associated with the strong normal vorticity fluctuations becomes increasingly

important.

As the curvature increases, the axial (streamwise) wall pressure spectrum de-
creases for all scales, whereas the azimuthal (spanwise) wall pressure spectrum

decreases only for small wave-numbers (large scales). A curvature dependent outer
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length scale, which increases with curvature, is proposed from geometrical argu-
ments. This length scale collapses the streamwise spectra of the wall pressure
fluctuations of the two transversely curved flows studied with that of the plane
channel in the high wave number range.

Even though the wall pressure fluctuations become increasingly better correlated
around the cylinder, the azimuthal correlation length, when measured in wall units,
decreases as the curvature increases. On the other hand, the axial (streamwise) cor-
relation length increases with curvature. Unlike in the planar case, the wall pressure
iso-correlation contours are elongated in the streamwise direction, for both large
and small separations. Since the streamwise elongation of turbulence structures
with curvature is most pronounced near the wall, it is conjectured that the near
wall fluctuations are more important in determining the length scales of the wall
pressure fluctuations. Fractional contributions of the flow (from inner and outer
layers) to the wall pressure intensity show a minimal effect of curvature relative to
the plane channel.

Like the axial (streamwise) one-dimensional spectra, the temporal spectra of
the wall pressure fluctuations of the transversely curved flows also decreases as
the curvature increases. A new curvature dependent time scale which increases
with increasing curvature was propsed. When scaled with the mean wall shear and
this time scale the temporal spectra of the wall pressure fluctuations of the two
transversely curved flows studied and that of the plane channel collapse in the high
frequency range.

The two-dimensional spectra and space time correlations of the wall pressure
fluctuations give a lower convection velocity (U, = 0.6U,,) than in the plane chan-
nel. With this convection velocity Taylor’s hypothesis holds in the two transversely
curved flows studied.
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APPENDIX A

Reynolds Stress Budgets

In this appendix the transport equations for the Reynolds stresses and turbulent
kinetic energy are presented. They are derived from the Navier-Stokes equations
in general tensor notation (see for example Moser & Moin [1984])

avi

e+ VAV = —g*Py gV, i=1,23, (41)

Rer

where the superscripts denote contravariant tensors and the subscripts following
a comma denote covariant derivatives. The contravariant tensor g% is the metric

tensor, which in cylindrical coordinates is

.. 1 0 O
g?=10 1/z2 0], (A.2)
6 0 1

and the coordinates (z,,z,,3) correspond to (r,9, 2), respectively.

The evolution equation for the mean velocity is given by

v

1
- + VAV 4 okof = %P + — MV, (A.3)

Rer

and the velocity fluctuations equations,

o'

1
v +Vkv'k+ka' =—g pk-}-——g v“—-(vv —vv")k, (A.4)

Rer
are obtained by subtracting Equation A.3 from Equation A.1.
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(B

From Equation A.4, evolution equations for the Reynolds stresses are:

ovivd

ot

total rate of change,

+ VE@id) , =

- (vj vlcvik + vivkvjk) production rate,

— [gikvj P+ gjkvip k] velocity pressure-gradient term,
(A.5)
- (viv vk),k turbulent transport rate,
L P
J
+ Re.,.g (v*v7) ok viscous diffusion rate,
_ 2 k(g . o
Re, A7k viscous dissipation rate.
The transport equation for the normal stress, vZ,
ov? i)
Pr — 9y, 22
ot or
10 2
— — mnn, v — —
{22 tvtwworen) - Zororm
(A.6)

1 (18 ¢ 7\, 26F-7D)
+Ref ;&(rar)-*- r2

_ 2 [(2rY, L2 N (0]
Rer |[\3r ) Tr2\Ge % 52 ) |

is obtained from Equation A.5 by setting : = j = 1, evaluating the contravariant
derivatives and taking advantage of the homogeneity in the # and z directionc
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The transport equation for the azimuthal stress, v3,

o _ _,udp
ot r 00

0
- {%57: [r(Tevavr)) + g"vrvavo}

L1 Fl_fi_(rav—%)+2(3?—22)

(A7)
Rer ; 61' 61' r? ]

2 [ (o) L (3w NP (0]
" Rer |\or 2\ "' 9z ) |

is similarly obtained from Equation A.5 by setting : = j = 2.

The transport equation for the axial stress, vZ,

e

7
ov}

ov} op
at

0z

= —21);

dv,
dr

10, ,
— {;-b';[r(vzvzvr)]} (A.s)
\ 10 (52
+ Ref Lrar d af‘
2 H(?zz_)ﬂl’_%)ﬂ(%)’
Re, i or r2k30 0z ’

is similarly obtained from Equation A.5 by setting : = j = 3. The budgets of
vZ, v and v? for §/a = 5 and §/a = 11 are shown in Figures A.1, A.2 and A.3,
respectively. The various terms of the budget equations are qualitatively like their

- LUzVp

planar counterparts (Mansour et al. (1988]) but have their magnitude decreased as

the curvature increases.
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The transport equation for the Reynolds shear stress, v; vy,

Ovzor _ —dV,

—_p2

vrT

ot r
l d 0 ,
- vré‘? +vz5§

ror

19 1
- {—5— [r(vrvzor)] — ;'Uz'vavg}

(A.9)

+ 1 12 0v;vr _Urz |

Rer [rOr 4 or r2

2 —3vr8vz iavz 6vr_v +@£_3_vi
Rer:|0r 0r " 1200 \(66 °° 9z 9z |’

is similarly obtained from Equation A.5 by setting ¢ = 1 and j = 3. The budget
of 70y for §/a = 5 and é§/a = 11 is shown in Figure A.4. As in the case of the
normal stresses, the budget of the Reynolds stress v,y is also similar to its planar
counterpart (Mansour et al. [1988]) but the magnitude of the terms decreases as

the curvature increases.
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The transport equation for the turbulent kinetic energy, ¢*> = (1/2)(vZ +v2+v2),

aq2 dv,
Bt - e
B I Y S

[vr3r+ rao-i-vza

10

{2 )
B2

Rer |rOr \ Or (A.10)

_ 1 1 [ (3 ’+<Qv_v+ )’+ EAY
Re,r? |\98 — " 50 U 39

- |(3) +(3)+(3)]

is obtained from the trace Equation A.5.

The budget of turbulent kinetic energy for §/a = 5 and §/a = 11 is shown in
Figure A.4. The five terms in the right hand side of the transport equation for

the turbulent kinetic energy (Equation A.10) of the two transversely curved flows
are compared to their planar counterparts (Mansour et al. [1988]) in Figures A.6
through A.10. The magnitudes of all terms decreases as the curvature increases.
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Figure A.2 Transport equation balance of the normal turbulence intensity nor-
malized by v and u; for (a) §/a = 5 and (b) 6/a=11: production, ---- dis-
sipation rate, .- velocity-pressure gradient (pressure diffusion), —-— turbulent
transport, —-— viscous diffusion.
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Ficure A.3 Transport equation balance of the azimuthal turbulence intensity nor-
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sipation rate, ------- velocity-pressure gradient (pressure diffusion), —-— turbulent
transport, —-— viscous diffusion.
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FiGURE A.6 Velocity pressure gradient term of the turbulent kinetic energy equation
normalized by v and ur: —-— plane channel (Mansour et al. [1988]); cylinders with

——§6/a=5and ---- §/a=11.

-0.08

Viscous disstpation
-010

Ficure A.7 Dissipation of turbulent kinetic energy normalized by v and us: —-—

plane channel (Mansour et al. [1988]}); cylinders with
11.

129

§/a=>5and---- §/a =




3
]
g 3 /O
3 AN
5 \
: [
I AN
IS / A NN
N\
1 3 \s
....... \_\‘
-l eI T TT—
s . —— e
0 20 40 €0 80
yt
Ficure A.8 Production of turbulent kinetic energy normalized by v and ur:
—-— plane channel (Mansour et al. [1988]); cylinders with é/a = 5 and
----é/a=11.
(=
=
.
1A
= ':"\\
» 8
e o
S
2 1
-
8
3 .
S 9]
o
'°T o F v L ¥ v
) 20 4 80 80
y+

Ficure A.9 Turbulent transport of turbulent kinetic energy normalized by v and
ur: —-— plane channel (Mansour et al. [1988]); cylinders with —— é/a = § and

~le §la=11.
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APPENDIX B

4.1.1 is given by

Liouville form the Equation B.1 is

L) =rf(r),

where the operator £ is given by

d d m? .
i (ra) - (ee).

L=

ary boundary conditions is the solution of

L(G) = 8§(r — o),

i
dr

ag

dr =0,

r=a

=0,
r=a+1
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d*p 1dp m* .\ . 2

i i (';‘*'kz p= f(r),
dp _ 1 &by ’ dp — | —2im 1
dr|._, Rerdr?|,_, dr[r=a+1 Rerr? r

The Green’s Function for Pressure

In cylindrical coordinates the Poisson equation for the pressure is given by Equa-
tion 4.1.1. For each wave-number pair (m, k;) the Fourier transform of Equation

where f(r) is the Fourier transform of the pressure source terms. In the Strum-

(B.2)

(B.3)

The Green’s function, G, of the operator £ with homogeneous derivative bound-

(B.4)




where §(r ~ ro) is the Dirac delta 'function’ and ro denotes the radial position of

the source. At r = ry, G is continuous

G(ry 7‘0) + = é(f', To) - (B5)
r=r, r=r,
and satisfies the jump condition
d , d ; 1
—G(r,ro) — —G(r,ro) = —. (B.6)
dT 0 r=r° dT‘ 0 r=r0— 7'0

For this system, Green’s identity is given by

[ o) - oz ar - { (,,%9 - 5’;—")] " e

a

which, upon integration, gives the general form of the Fourier coefficient for the

pressure fluctuations,

at+l | .
p(r) =/(; G(r,ro)f(ro)rodro+
(B.8)

. dp X dp
ad(r, a)d—’r’ —(a+1)é(ra+ 1)d—ff

r=a r=a+1

The Fourier coefficient of the wall pressure fluctuations is obtained by evaluating

this expression at r = a,

a+1 . .
B = / G(a, ro)f(ro)rodro+
(B.9)

R dp 5 dp
aG(a, a)d—I: —(a+1)G(a,a + 1)—di:

r=a r=a+l
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The contributions to the wall pressure from a volume around the cylinder bounded
by a < ro < rs are given by

s " "
ey = [ Gla,ro)(rolradrot

(B.10)
4 dp 5 dp
ag(a, a)a—i—) - rsG(a, r-s)ch .

r=a r=r,

Likewise, the contributions of the outer part of the volume (rs <ro < a+1)are
obtained by subtracting Equation B.10 from Equation B.9

a+l .
b= [ Glaro)f(rolrodrat
’ (B.11)
—(a+1)¢(a,a + l)d—p

r=rg dr r=a+l

- dp
ng(a, rs)a‘g
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APPENDIX C

Flow Databases

Velocity and pressure fields for the two transversely curved flow calculations
(6/a = 5 and 11) were saved every 200 time steps. The time step was 2.52 x 10~%
6 /ur time units for the §/a = 5 case and 2.06 x 10~4 §/u, time units for the §/a = 5
case. The wall pressure and wall shear stresses were saved every 10 time steps in
both calculations.

The data was archived in Fourier space in the axial and azimuthal directions
and in physical space in the radial direction and in time. The spatial character-
istics of the data are described in Table 2.2, and the temporal characteristics are
summarized in Table 4.1.

C.1 Velocity and Pressure Data

The first record of each restart file is a header containing: (NR, NZ, NTH,
MTH, MR, REY, MEANPG, DT, LTH, LZ, RA, TIME, TSTEP), which
are the number of planes in the radial direction minus 1 (NR), the number of
Fourier modes in the axial direction (NZ), the number of Fourier modes in the
azimuthal direction (NTH), the drawer size in the azimuthal direction (MTH),
the drawer size in the radial direction (M R), the Reynolds number based on the
unity velocity in which the data is reported (in these units the friction velocity is
1.2615 for the §/a = 5 case and 1.3947 in the 6§/a = 11 case) and §/2 (REY) (in
both cases this Reynolds number is 85), the time step in these units (DT'), the
length of the computational domain in the azimuthal direction (LT H), the length
of the computational domain in the axial direction (LZ), both in units of §/2,
the ratio of the outer to inner radius of the computational domain (RA), the time
(TOLD) and the time step (TSTEP) (in these units the time step was 4 x 10~4 for
6/a =5and 3x 104 for §/a = 11). Next there are (NR/MR+1)x (NTH/MTH)
VDATA[RGR, THGR] records containing the complex Fourier coefficients of the
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velocity field in the order (Vj, V3, V;) followed by (NR/MR + 1) x (NTH/MTH)
PDATA[RGR,THGR)] records containing the complex Fourier coefficients of the
pressure field. The indices RGR and THGR identify the drawers of the database.

Each VDATA and PDAT A drawer is a complex array dimensioned as DAT AV
[NZ/2,MTH,3, MR] and as DATAP[NZ/2, MTH, M R], respectively. The first
index indicates the axial (streamwise) wave number I, = 1,..., NZ/2. The second
index indicates the azimuthal (spanwise) wave number I, = 1,..., MTH, and the

wave number associated with each I, is given by

(THGR- 1)« MTH +I,, I, < MTH/2,
~(THGR-1)« MTH + I, - MTH/2], I, > MTH/2.

The third index in DAT AV indicates the velocity component according to I; =
1-Vy,2-V:,3-2 V).

The velocity field is given in physical space in the radial direction according
to the radial coordinate mapping described by Equation 2.1.6. The last index
indicates the radial plane RPLANE = I, + (RGR—-1)x MR, I, =1,..., MR, and
§ = —cos(r(RPLANE — 1)/NR).

The restart files described above are in the mass storage system Columbia.arc.
nasa.gov at the NASA Ames Research Center in the directory /csf/rf/rft/neves
/run06/rst for the §/a = 5 calculation and in the directory /csf/rf/rft/neves
/run12/rst for the §/a = 11 calculation. The file names are wire.R.[edititon

number].

C.2 Wall Data

There are 32 files with the wall data for the §/a = 5 calculation and 26 files for
the §/a = 11 calculation. Each file contains 160 time samples of the wall pressure
(pw) and wall shear stresses (0V,/0r|w) and (8V,/0r|y). The first record of each
file contains (NTI, NZ, NTH, MTH, MTI, REY, LTH, LZ, RA), which are
the number of time samples (NTI), the number of Fourier modes in the axial
direction (N Z), the number of Fourier modes in the azimuthal direction (NTH),
the drawer size in the azimuthal direction (MTH), the drawer size in the temporal
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direction (MTI), the Reynolds number based on the unity velocity in which the
data is reported (in these units the friction velocity is 1.2615 for the é/a = 5 case
and 1.3947 in the §/a = 11 case), and §/2 (REY'), the length of the computational
domain in the azimuthal direction (LT H), the length of the computational domain
in the axial direction (LZ), both based on §/2 and the ratio of the outer to inner
radius of the computational domain (RA).

Next there are (NTI/MTI) x (NTH/MTH) PDATA[TIGR,THGR] records
containing the complex Fourier coefficients of the wall pressure (py,), (NTI/MTI)x
(NTH/MTH) WDATA[TIGR,THGR] records containing the complex Fourier
coefficients of the azimuthal wall shear stress (0V; /dr|y) and (NTI/MTI)x(NTH
/MTH) UDATA[TIGR,THGR] records containing the complex Fourier coeffi-
cients of the axial wall shear stress (8V;/9r|y). The indices TIGR and THGR iden-
tify the drawers of the database. Each PDAT A drawer is a complex array dimen-
sioned as DATAP[NZ /2, MTH, MTI]. The first index indicates the axial (stream-
wise) wave number I} = 1,..., NZ/2. The second index indicates the azimuthal
(spanwise) wave number I, = 1,..., MT H as described in the previous section. The
third index indicates the time sample within the file TPLANE = I+ TIGRxMTI,
I, =1,..,MTI. The time sequence through the files is identified through the file
edition number. The structure of UDATA and WDATA is the same as that of
PDATA.

The wall data files described above are in the mass storage system Columbia.
arc.nasa.gov at the NASA Ames Research Center in the directory /csf/rf/rft
/neves/run06 for the §/a = 5 calculation and in the directory /csf/rf/rft/neves
/runi12 for the §/a = 11 calculation. The file names are waldat.R.[edititon

number].
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